
30-117 350 Nfl (HIERARCHIAL PROCESS CONPOSITION): A NODEL OF Ini
1' STRUCTURE AND CHANGE IN..(U) ROCHESTER UNIV NV DEPT OF

COMPUTER SCIENCE T J LEDLANC ET AL. NAY 65 TR-±53
UNCLSSIFIED DACA7-S5-C-S661 F/G 9/2 N

EEEEEEEEEEoiE
I E.......fllflflf

I l...llfffff



7. 5n, .

*111

liii I__

11111 I°,



-Z

HIIPC: A Model of Structure and Change
in Distributed Systems

Thomas J. LeBlanc and Stuart A. Friedberg
Computer Science Department

The University of Rochester
Rochester, New York 14627

* TR 153
May 1985

DTIC
KEl-.ECTE%

DtRIMtON STATEMENT~ AuLAJis

Sppaved tot public ,, eo 'i

D)imbution Unlimited

C-,

Department of Computer Science
University of Rochester

. .Rochester, New York 14627

• 
.. . . .. *.. .... .. .. •C.8 G



HPC: A Model of Structure and Change
in Distributed Systems

Thomas J. LeBlanc and Stuart A. Friedberg
Computer Science Department
The University of Rochester
Rochester, New York 14627

TR 153

May 1985 DTIC
(F I_ EC T E

1t. JUL 2 986J

' B
Abstract

I Distributed systems must provide certain fundamental facilities including communication, protection.

resource management, reliability, and process (computation) abstraction. Current designs for distributed

systems tend to focus on only one of these issues; support for multiprocess structures has been especially

neglected. The HPC model, an object-oriented model of interprocess relationships for distributed systems,

addresses all of these fundamental services. The major novelties of HPC lie in the extension of the process
abstraction to collections of processes and the provision of a rich set of structuring mechanisms for
distributed computations. An important aspect of the model is that it results in the ability to maintain and
exploit execution context for managing processes in a distributed computation. [n this paper-we describe,
the HPC model, show how the model can be used to build system-level services, and discuss the
implementation of an HPC kernel.

This research was supported by National Science Foundation grant number DCR-8320136 and
DARPA/ETL grant number DACA76-85-C-0001.

~ Th~m~nONSTATEMENT )t
Approved lt public Teleo 4

Dtrtbuiton Unlimttei

~=
, .1 .. ''''..€ ;.,• ,'''" ¢ ' .'"•"'", .",, ,'" . w .. . . . . . . . . , , . . . .. ....-"-. . . -"""- '" "'," ' , ,' - -



J()WXPL L Wb Ar.JJ A . L'* -S IJV g Y~ : - '=: P 7.P 'P ' ,- ='i =Ji.f... - . .. .. .-.--..-.- ,..-, -, -. i

SECURITY CLASSIFICATION OF THIS PAGE (Whmen Dote Entered)
REPORT DOCUMENTATION PAGE READ INSTRUCTMNS

BEFORE COMPLETING FORM
L REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TR 153

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

HPC: A Model of Structure and Changetechnical report
Distributed Systems. 4. PERFORMING ORO. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(8)

Thomas J. LeBlanc and Stuart A. Friedberg DACA 76-85-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Computer Science Department 
AREA & WORK UNIT NUMBES

University of Rochester
Rochester, NY 14627

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency May 1985
1400 Wilson Blvd. 12. NUMBER OF PAGES

Arlington, VA 22209 -35 -
14. MONITORING AGENCY NAME a ADDRESS(If dlferent from Controlling Office) IS. SECURITY CLASS. (of thle swort)

U.S. Army Engineer Topographic Laboratories unclassified
Attn: ETL-RI (Dr. Leighty)FortBel~ir VA 201 Ia. DEC;LASSI FIC;ATION/ DOWNGRADING
Fort Belvoir, VA 22060 SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i dilfferent irom Report)

IS. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on teer*e aide it necessary and identify by block number)

distributed systems, process structuring, interprocess communication,
protection, abstraction

20. ABSTRACT (Continue on reverse aide it necessary end identify by block number)

Distributed systems must provide certain fundamental facilities including
communication, protection, resource management, reliability, and process (com-
putation) abstraction. Current designs for distributed systems tend to focus
on only one of these issues; support for multiprocess structures has been
especially neglected. The HPC model, an object-oriented model of interprocess

DD I ANM. 1473 EDITION Of I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Ws* Dote Entered)

-.



SECURITY CLASSIFICATION OF THIS PAGE("amih Data Entered)

relationships for distributed'systems, addresses all of these fundamental
services. The major novelties of HPC lie in the extension of the process
abstraction to collections of processes and the provision of a rich set of
structuring mechanisms for distributed computations. An important aspect
of the model is that it results in the ability to maintain and exploit
execution context for managing processes in a distributed computation. In
this paper we describe the HPC model, show how the model can be used to
build system-level services, and then discuss the implementation of an HPC
kernel.

S I A OF .

7 ..

.p._

#, ~SECURITY CL.ASSIFIC;ATION OF" THIS PAGE(When Data En~raed

S. . . . . . . ... .. . . . . . . . . . . . . . . . % ' *'' '
% -. o .. o. .. • ,, - . 'o . . * '. - . ...-. - " . , .• • ' . • . . . . - . o . ° - ' o ° i . - . -.



L Introductioll
Distributed systems must provide certain fundamental services including communication, protection,

resource management, reliability, and process (computation) abstraction. Current designs for distributed
systems tend to focus on only one of these issues. For example, many systems have focused primarily on
communication: How do processes communicate? When do they communicate? What assumptions about
communication are necessary? Of the basic services, support for multiprocess structures has been especially
neglected.

Distributed systems tend to be complex, with many distinct components. The computation elements
and the communication paths among them comprise the structure of a distributed system. Designers of
distributed applications will choose a wide variety of logical structures when designing their systems. No
complex system can be built without such structures, yet most structure disappears in the implementation
of a distributed application on top of a distributed operating system. One may typically expect the
implementation to contain a mass of processes with no indication of how they are related by function or
communication. What has been lacking is a detailed exploration of the underlying structure of distributed
systems: How are objects structured? How do user programs interact with system services? What support.
beyond the need to provide communication, is necessary for long-running distributed computations?

This work has been motivated by the observation that most operating systems lack support for
structuring dynamic relationships between processes. Whatever structure is provided is usually implicit and

. cannot be exploited. For example, few systems allow for the regulated composition of processes. It is
*" difficult or impossible to create complex relationships between computational units constructed with

abstract components. In addition, operating systems do not maintain a global context for an executing
process. Since processes cannot exploit the context in which they execute, error recovery must be based
solely on local context, even when global context may provide a better recovery strategy.

Distributed operating systems are not the only systems that provide little or no recognition of
interprocess relationships. It is unfair to criticize distributed systems for failing to provide sophistication
absent in conventional systems. However, these issues are especially critical for distributed systems because
they can involve hundreds of machines and thousands of services. The amount of software and the number
of users involved can be very large. The increasingly blurred distinction between system services and
clients in distributed systems suggests that many programmers will require greater interaction with system-
related software, for example, to provide application-specific recovery mechanisms. This interaction can be
made simpler and less error-prone if the operating system is structured appropriately. In addition,
distributed programming is fundamentally more difficult than writing programs for a single processor,
especially when a program must be able to compensate for machine failures. Software support for a
programming methodology that facilitates distributed programming is especially important. Finally,
interprocess relationships are more importan. in distributed systems because applications are expected to
use multiple processes as a matter of course.

Hierarchical Process Composition (HPC) is an object-oriented model of interprocess relationships
designed to address these issues. The major novelties of HPC lie in the extension of the process abstraction
to collections of processes and the provision of a rich set of structuring mechanisms for distributed
computations. The fundamental tool in the HPC model is abstraction, which, in various forms, is used to
provide object definition, protection, and composition. Structuring forms are defined that allow a program
to create protection domains that permit, yet limit, structural modification of objects. An important aspect
of the model is that it results in the ability to maintain and exploit execution context for managing
processes in a distributed computation.



2

In the HPC object model, naming, protection, resource management, data, procedures, processes, and
communication are all characterized in terms of discrete objects. There are no operations on passive
objects. All computational interactions between objects take place by sending and receiving explicit
messages, a view that distinguishes HPC from the abstract data type object model. 1,2 In addition, the
structural relationships between objects are explicitly managed in HPC, unlike continuation-style binding
found in actors 3 and Smalltalk-80.4

An inspirational force behind this work is the simplicity of process structures in the Unixt operating
system. Process families in Unix are tree-structured: each process has a single parent and may create many
children. Unfortunately. Unix does not really support the process tree structure. For example, a process
can communicate via signals with any other process, without regard to the process hierarchy. In addition,
the process tree structure is difficult to exploit, children do not naturally know their parent process and
parents cannot directly disown children. Process groups, an addition made in Berkeley Unix,5 among
others, is an attempt to partially rectify the problem. This addition to the process hierarchy allows signals
to be sent to a group of processes, but does not provide a general solution for the management of process
subtrees.

Unix processes communicate via pipes, a mechanism whereby the output of one program becomes
the input of another program. In effect, a pipe is the communication channel that links the output file
descriptor of one process to the input file descriptor of another. This communication channel acts as a
speed-matched buffer, preventing a process from sending data faster than another can receive it. Multiple
processes can be linked using pipes to form pipeline structures. The primary disadvantage of the Unix pipe

4. mechanism is that the relationship between the processes is poorly expressed. There is no mechanism for
building a complex sequence of communicating processes into a pipeline structure and binding a name to
that structure, such that many instances can be created, manipulated, and composed. That is, pipes do not
allow arbitrary composition. In addition, pipes are implemented using an I/O stream interposed between
two processes that use it to communicate; no higher authority understands and oversees this relationship.
The effect is that. in Unix, the failure of any segment in a pipeline causes the entire pipeline to be aborted
since, without additional context, there is little information available to guide less drastic recovery
mechanisms.

Communication in the HPC model is similar in flavor to the message-based operating systems
Demos6 and Arachne7 (formerly Roscoe). Both of these systems use links to connect communicating
processes. A link combines the notions of communication path and capability. The holder of a link may
send messages to the owner, i.e., all links are uni-directional. The holder can duplicate the link or give it
away subject to restrictions specified by the owner, but the same receiving process is always implicitly

" associated with the link. A sending process names a link only, not the destination process.

A switchboard task or resource manager is used to establish links between two unrelated processes.
Each new process is created with a link to the switchboard that allows a process to request links to other
processes. Control information, in the form of asynchronous notification, may be generated by the kernel
for the owner of a link when the link is copied or undergoes a status change.

In both of these systems. a user process that wants to send messages to the owner of a link must
explicitly get access to the appropriate link, usually via the switchboard process. Thus, user processes must
explicitly manipulate the connections to their interfaces. In HPC, a process always communicates by
sending messages to an internal interface. Connections between two interfaces, necessary for

tUmntx is a trademark of Bell Laboratories

* *.-*.. . .



3

communication to take place between processes. are transparent to the sending and receiving processes. A

standard system component that connects and disconnects the appropriate interfaces can be included as

part of each program. Autonomy is not sacrificed because individual processes still maintain complete
control over their own internal interfaces.

HPC interfaces provide more structure (typing or interpretation for messages) than IPC sockets8 and
less structure than Accent ports.9 Unlike both sockets and Accent ports, HPC interfaces are permanently
associated with a specific process. An HPC interface may be thought of as a named entry point for a
concurrent task or process.

In many message-based operating systems, including Demos and Arachne, a single message between
processes uses the same mechanisms and receives the same level of support as a series of messages between
processes with a long-term relationship. This can be justified in an environment in which most
communication is short in duration. However, for many distributed computations, communication
connections can be long-lived. What is lacking is a mechanism for codifying long-term relationships, so
that explicit support can be provided consistent with the needs of the processes involved. One of the
assumptions underlying the HPC model is that the granularity of process interactions in distributed systems
can vary greatly depending on the relationship between the processes involved. Therefore. the model

provides structuring mechanisms for making long-term relationships explicit.

Much of the structure of HPC is similar to that of Eden, 10. 11 an object-based distributed computing
environment developed at the University of Washington. Eden objects. called ejects, communicate via
messages. The only connection with the outside world for an eject is defined by its invocations (i.e.,
interfaces): the internal structure of an eject is the concern of its programmer alone. Ejects are built using
processes communicating via monitors controlled by a single coordinator process.

There are three main differences between Eden and HPC: (1) Eden provides invocation as the
primary mode of communication; HPC uses asynchronous messages, (2) Eden uses capabilities to check
access rights to invocations: HPC was explicitly designed to avoid the use of capabilities, and (3) Eden
provides a mostly flat collection of objects: HPC provides a rich set of mechanisms for creating nested

object structures.

There is a close relationship between the HIPC model and the activity model also developed at the
University of Rochester. The activity model defines a conceptual tool for describing the relationships
between objects involved in the execution of a distributed task. 12 A single object may participate in many
different activities and a single activity may be made up of numerous subactivities. Activity tags are used
to identify the activity affiliation of data and messages. HPC began as an attempt to define, in detail.
operating system support for the activity model. It quickly diverged, although pre. ious work on activities
continues to have important influence.

In section 2 of this paper, we present the HPC object model, introducing terminology used
throughout the paper. Sections 3-6 provide further details of the model, describing the concept of
operation domains for protection, structured interfaces for communication, how to maintain the consistency
of an HPC system in the presence of partition, and HPC support for sharing. Section 7 shows how to build
representative system-level services using the HPC model. In section 8. we discuss the implementation of
an HPC kernel (currently under development), and summarize, in section 9. the motivation and rationale
behind the HPC model.



4

2. An Overview of the HPC Object Model
HPC can be viewed as an extension of the process abstraction model. A set of communicating

processes can be encapsulated to form an abstraction whose status within the system is equal to that of an
ordinary process. Any commands that can be applied to a single process can be applied to the abstract
object representing a set of processes. We have chosen hierarchical composition as the basic structuring
mechanism for process collections.

2.1. Objects
The simplest type of object in HPC is the process, which consists of active state, communication

interfaces, and a code segment. An object can be constructed from component parts by combining other
previously created objects, communication channels between sub-objects, an encapsulation shell, and a set of
interfaces to the external world. The behavior of a complex object is defined by the behavior of its
component objects and the structure of their interface connections. A fundamental requirement of the
model is that the semantics of external-world interfaces be the same for both complex and simple objects.

When an object is created, it is given a unique name. The name of an object is known by its creator
and the object itself: these two objects may in turn pass the name on to other objects. The system
commands that modify the structure of an object require that the name of the object be known. Sending a
message to an object, however, does not require that the sender know the name of the object, only that the
appropriate interface in the sender be bound to an interface in the receiver by a channel.

2.2. Interfaces and Channels
Communication between objects can only occur by sending messages through channels. A channel is

a directed communication medium that allows a message to be sent asynchronously from one object to
another. o the underlying system, messages are simply uninterpreted values. A channel does not provide
queuing of messages or reliable delivery. Reliability, if necessary, must be provided by higher-level
protocols.

An interface describes the type of message that can be transmitted by an object through a uni-
directional channel. Each object must define an interface for each potential communication stream.
Channels are bound to interfaces by run-time operations. At any point in time, some object interfaces may
be bound to channels while others are not. Messages that are sent using an unbound interface are lost.

In order for two objects to communicate, the appropriate interfaces of each object must be connected
to the same channel. The connect operation is used to create a channel joining two specified interfaces.
The disconnect operation is used to remove the channel, terminating the connection. In this connection-
based approach, the location and identity of partners in communication is transparent to the
communicating objects, since each object is communicating through a locally named interface. This makes
it easier for the underlying system to mask failures and provide process migration. In addition, the control
aspects of communication (Le., with which other object does a particular object communicate) are separated
from the communication itself and can be governed by a third party whose context includes both
communicating parties.

There are three communication operations that can be performed on an interface: send, receive, and
select. HPC is designed to model asynchronous, autonomous operations, hence, the send and receive

',"

II -I 11 al I !
I

-- I I l "I = m i, 9 I - " !! " " " - l- J: -l - - l I



5

primitives are nonblocking. The select primitive is analogous to the Adat select statement, which provides
a form of blocking receive, eliminating the need to poll individual interfaces.

2.3. Encapsulation Shells
Many modern programming languages (e.g., Modula-2, Ada) allow the programmer to encapsulate an

abstract object within a module that presents a well-defined interface to the outside world. This has the
advantage of separating the abstract behavior of the object from the implementation of the object. An
HPC encapsulation shell is similar to a module in that it provides a structuring form for processes. A shell
is an object. along with all its contents. Shells are designed to support the composition of objects. A
composite object can be created by encapsulating a set of communicating objects within a shell that
provides appropriate interfaces, thereby creating a "black box" that can be combined with other "black
boxes" to form more complicated objects. A shell serves both as an abstraction mechanism and as a handle
for structured objects.

Not all modules in programming languages are purely syntactic constructs (e.g., interface modules or

monitors in Modula). Similarly, not all shells are purely abstraction mechanisms. An operation domain is a
shell created with a designated control component. called the controller. responsible for modifying and
maintaining the internal structure of the objects within the domain. In particular, the controller is
responsible for establishing communication connections

All shells form a strict tree-structured hierarchy. A new shell can be created around a collection of

sibling objects using the enclose operation. The number and types of the shell's interfaces, as well as the
collection of objects it is to enclose, are given as arguments to enclose. The specified objects become the
children of the newly created shell. Any previous connections between objects inside and outside the shell
are removed. The disclose operation removes a shell and any channels connected to its interfaces. The
children of the shell become children of the shell's parent.

A shell may enclose an arbitrarily complex collection of objects. The externally visible behavior of
the resulting object is defined by the shell's communication interfaces. A shell can be transparent or
opaque. The internal structure of an opaque shell, including internal channels and the number and type of
sub-objects, is invisible outside the shell.

A shell has a name and a set of interfaces. When an object is created, the properties of its interfaces

are fixed for the lifetime of the object. Each interface is visible on both sides of the shell and may display
different properties on either side. Therefore, we distinguish the internal and external views. Associated
with the external (internal) view are the interface properties visible from outside (inside) the shell. Neither
view has any special status not held by the other. The internal view is used to connect a channel between

% an object within the shell and the shell itself. The external view is used to forward messages from the shell
to other objects. Thus, some interfaces are associated with active processes, while others are used to
forward messages between compatible interfaces in different shells. This does not imply, however, that the
implementation must actually forward messages through a series of physical interfaces.

In any interaction with other objects, a complex object is indistinguishable from a simple object with
the same interfaces. Commands that can only be applied to simple processes in other systems may be
applied to these complex objects in HPC. For example, the execution of an object can be halted without
regard to whether the object is a simple process or a complex object.

tAda is a registered trademark of the U.S. Departmenc of Detnse

'. -..-. '.-.-..-..'........--...... .. .. . .. '".."-..... .... .---. . -...- .. .. I-. .'



6

Figure I shows three HPC objects. Figure la contains an abstract object with two external interfaces.
This object could be either a simple process or a complex object: there is no way to tell since the object is
opaque. The only information available to the outside world is the name of the object and the names,
number, and types of the object's external interfaces. In Figure lb three objects are shown connected in a
pipeline. Again, each object in the pipeline could be either a process or a complex object. We have not
shown the direction of communication flow through the pipeline. Finally. in Figure Ic a complex object is
shown with the same abstract behavior as the three objects in Figure lb. This object, currently transparent
and under control of the enclosing domain, can be given a controller, causing the object to become opaque
and capable of internal modification to its structure. The next section explains how this is done.

3. Operation Domains and Controllers
The HPC model recognizes the need for dynamic relationships between processes. Communication

channels can be dynamically established between processes and shells can be created and destroyed to
represent the changing relationships between objects. These operations allow complex interprocess
relationships to be created, but their unrestricted application could lead to chaos. HPC restricts the
execution of structure modifying operations based on additional hierarchical structure, in the form of
operation domains.

The terms domain and principal are taken from the security and protection literature. A domain is a
collection of objects that have the same protection or access control. A principal is an agent that has
privileged access to the members of a domain. In HPC. operation domains (or simply, domains) are
delineated by a shell and privileged access amounts to the right to execute any of the structure modifying
operations. The contents of a domain are everything inside the domain shell that is not inside another
(nested) domain. In this way, operation domains form a coarse tree structure that is superimposed on the
object hierarchy of HPC. Each domain has exactly one principal, called a controller, which is the only
object that may modify or even examine the contents of the domain. Controllers are members of the
domains they control and may not examine or affect the contents of other domains. Thus, shells that
delineate a domain are opaque since no object can observe both sides. Shells that do not delineate a
domain are transparent to the controller of the domain in which they reside. In this way, protection and
access control to HPC objects and their connections are associated with the basic hierarchy.

The only objects that may be affected by more than one controller are shells that delineate operation
domains. A domain's shell is the root object in its own hierarchy and a leaf object in the domain that
encloses it. The controller of the internal domain is restricted to operations on the internal view of the
shell and its interfaces, while the controller of the enclosing domain is restricted to operations on the
external view.

3.1. Controller Subtrees
HPC implements principals through the notion of a controller subtree. The root of a controller

subtree may be identical with the root of the domain, in which case we call it a level 0 controller, or it may
be an immediate child of the root of the domain, in which case it is a level I controller. In all cases the
subtree may be of arbitrary complexity, from a single leaf process to a complex tree with nested domains
within it.

Implementing principals as controller subtrees rather than single processes makes it possible to
distribute the control function over several sites. In addition, it allows us to use the same structuring tools
in implementing complex control functions as in implementing applications. We do not have enough



(a)

Figure 1

p:!



"i

17
I+s.

experience to determine if this flexibility is necessary, however, this approach does have significant
advantages.

A domain with a level 0 controller is a self-controlling domain. All its members have the same power
to modify and maintain its internal structure. By definition, a primitive, or leaf, process is a self-controlling
domain. Its internal structure is hidden from every other object in the HPC environment. Most existing
distributed systems can be readily modelled by providing each user with a self-controlling domain where all
user processes are immediate children of the domain. This allows all such processes to interact in arbitrary
ways with processes owned by the same user; interaction with processes owned by other users must use the
interface presented by the domain boundary.

Domains with level I controllers provide for the separation of control from computation and finer
access control. The subobjects that are not members of the controller subtree have no need or even the
capability to create new processes, alter their interconnections, or otherwise reconfigure the domain. These
functions are reserved for the members of the controller subtree, which can be specialized for the control
task. There is an analogy with the various shell programs of the Unix operating system, all of which
specialize in creating new processes with the appropriate interconnections, monitoring their completion
status, arbitrating between them for access to the user's terminal, and so forth. Each shell is a valuable tool,
yet none performs any real computation. At the same time, user processes generally do not need to know
anything about their interconnections or relationships with other processes.

In theory, there is no reason why the controller for a domain could not be arbitrarily located in the
object tree. However, to simplify both the design and the implementation of the system, we have decided
that a controller must be a subtree of its domain, and furthermore, that the subtree must begin at the root
or one of its immediate children. It is easy to verify that a given process is authorized to carry out an
operation on an object if the process, the object and their common ancestor are all in the same domain.
The operations that create and destroy domains and controllers are easier to define and implement when
the controller subtrees are not arbitrarily deep within their domains.

Primitive processes are ultimately the only objects that will directly attempt to execute any operations.
since they are the implementation base of all complex objects. We must specify which primitive processes
are empowered to act as controllers for a particular domain. That is, which processes are allowed to
execute structural modification operations within a domain? For consistency and simplicity, we would like
our specification to ensure these properties: (1) a process is empowered as a controller of at most one
domain, (2) a process may be empowered as a controller only for its domain or the immediately enclosing
domain, (3) a controller subtree may itself be a domain, and (4) a controller subtree may not be both a
level 0 and a level 1 controller.

Assume we have a domain D and a controller subtree S. We cannot adopt the rule that all processes
in S that are also in D are empowered as controllers because there are no processes in D: each process is in
its own individual domain. If we adopt the rule that all processes in S are empowered as controllers of D.
it would violate the rule that each controller has privileges for just one domain, since S may contain
domains with their own internal controller subtrees. Therefore, we have adopted the rule that if S is a
controller subtree for domain D, then a process P is empowered as a controller of domain D iff

(1) P is a member of S
(2) There is no object strictly between P and the root of S that is a controller subtreet

t A is strictly between B and C if C contains A, A contains B. and A. B and C are all distinct objects.

..............................................



8

(3) There is no object strictly between P and the root of S that is a domain

These requirements are sufficient to ensure the desired properties.

Figure 2 illustrates nested domains and controllers. Shell SO delineates a domain, DI, with controller
C1. The structure of DI may only be modified by a process within Cl. However. Cl also delineates
domain D2, whose controller is C2. Process PI may modify DI, for example, by connecting Pi and Pj.
Processes within C2 may not since each process can be a controller for at most one domain. Similarly,
processes in C2 may modify D2, but P1 may noL since it is not in the controller subtree for D2.

3.2. The Role of the Controller
The processes of the controller subtree are solely privileged and responsible for issuing all the HPC

commands that manipulate shells, interfaces, processes, and controllers. All the arguments to such a
command must be members of the controller's domain. One consequence is that communication across a
domain boundary is possible only with the cooperation of the controllers on both sides of the boundary.

The primary purpose of the controller is to maintain the health of objects within its domain and the
relationships between those objects. Detection and recovery from failure is a major responsibility.
Reconfiguration of the object to accommodate changes in load, unusual demands for service, or global
changes, such as partition, is another task of the controller.

Beside routine health and maintenance, the controller holds all the mechanisms needed to debug at
the level of HPC objects and their interactions. For example, the controller may interact with objects using
the standard message communication primitives available to all objects, as well as the operations available
to it alone. Using send and receive and its ability to reconnect objects in arbitrary ways, a controller can
monitor all communication between two objects by establishing a communication path between the objects
that passes through the controller's interfaces or the interfaces of a selected debugging module. Monitored
communication would be transparent to the two objects involved.

The controller can establish a control channel with each of the objects within its domain for non-
transparent interaction. The role of the control channel is, by convention, to send commands to the
individual objects. Since the controller's ability to modify its domain is limited to a specific set of
commands (e.g., connect interfaces), this channel can be used to request that the object change state
according to established conventions. For example, an object can be destroyed by its controller, but cannot
be forced to enter a particular state by the controller. Thus, the control channel would be used for
commands that require the consent of the affected object.

In the same vein, a request channel can be established between the controller and an object that
provides the object with access to the services of the the controller, such as a request to make a specific
connection. All requests that require a reply would involve both the request channel and the control
channel. Objects do not have to define interfaces for a control or request channel, although it is expected
that most long-lived objects will do so. Once created, short-lived computations with static connections will
not usually require controller intervention.

3.3. Manipulating Processes
Process management in HPC is primarily connected with protection and secondarily with resource

management. There is a tension in the HPC design between the desire to exploit the underlying topology
of the distributed hardware and the desire to treat all objects in a uniform way, Since HPC may be
implemented over heterogeneous sites, management of raw processes is necessarily a site-dependent

;- .,...-...,,,?,.,.." . ................................................................................................................... ,.,..'.-,,.-.,, .. 2.-.,,, ",.



SO (Dl)

Cl (D2) Pi

• "P1 C2

Figure 2

,r. 

.
.-.,. . ,. .. .. .... .. . . ., ,, .,. . .., , -.. .. ,a. .- , , , . .-. . ., .. ,.... . - ,- .,. T. -,.' -, .,, ,. . . .... , .



rj -3 K 1"rV W L~w7 1.wVVV W UW 1w,' L'S Vn kh 10~ R. VC1' 1k.*'T K' KV1 " W - -W W . ' . ' J

9

problem. We have decided to separate the resource management of process allocation and scheduling from
the structure management of the HPC hierarchy. No one, not even controllers, ever observes a raw process
within HPC. As with other resources, processes at a site or set of sites are managed through an HPC
object. The details of identifying an executable image, controlling scheduling priorities, and so forth are all
independent of the HPC model, as part of the private exchange of messages between two objects. This
scheme allows HPC objects to manipulate site-dependent processes that exist entirely outside of the HPC
framework.

Introducing new processes into the HPC world is of more interest. HPC provides a primitive
operation, animate, that takes an empty shell, the identity of a process manager, and a manager-dependent
process description. Successful animation creates a new process and makes it a new domain delineated by
the shell. The HPC kernel remembers the association between the raw process and its domain so that HPC
operations on the domain will be translated into the appropriate process management primitives on the raw
process.

Animation is actually a bit more complicated than just described. The process description given as an
argument identifies the HPC equivalent of an executable image. We considered allowing the image to
describe a tree of objects, complete with controller subtree and initial connections, so that instantiating the
image would produce an entire subtree within the shell provided. However, we chose a simpler mechanism

that is capable of doing everything the apparently more powerful mechanism can. An image specifies a
single process and whether it is to be instantiated as a level 0 or a level I controller. An ordinary process
would be instantiated as a level 0 controller. In this case, a new self-controlling domain would be
superimposed on the shell given to animate. In the other case, a domain would be superimposed on the
shell, but a new subshell would be created within the given shell and the process would be instantiated
within the subshell. not the given shell. The subshell would also be designated the controller subtree of the
domain.

Instantiating a process as a level 1 controller inside the initial shell gives it an environment to
instantiate other processes and build up an arbitrarily complex domain. The operations that manipulate
controllers, discussed below, allow the initial controller to build up a more complex controller tree using

the ordinary structure modifying operations and then transfer the designation of controller to the new tree.

When an object dies, its domain is destroyed, removing the internal structure and leaving the shell

behind. Termination of a primitive process is treated as a death by HPC. A controller may execute a die
operation on its domain, which will remove all internal structure before removing the domain boundary
that protected the structure from the view of the enclosing domain. A controller may kill some member M
of its domain, which is equivalent to forcing all the domains nested within M to execute a die and then
removing any shells remaining within M.

3.4. Manipulating Controllers

Controller subtrees may be introduced through the invest operation. A controller may select some
subtree S of its domain and invest a new controller C for that subtree. If S is the domain itself, this
amounts to a transfer of control from the original controller to C. Otherwise, a new domain is created. If
C was previously a self-controlling domain (excluding primitive processes), the old domain boundary of C

4, is destroyed to assure that no process is a controller for more than one domain. If C represents a domain
with a level 1 controller, it remains a domain and its controller is limited to modifications within C.
Members of C that are not members of its controller subtree are empowered as controllers of S. This also
ensures that each process is controlling at most one domain.

'p
'pI

.*..*.*~*J,~ p.- .. -' * .



10

Complex objects can be created either top-down or bottom-up. A problem arises, however, if
domains are constructed top-down. Once a controller is invested with a domain, the controller for the
enclosing domain no longer has the ability to operate within the newly created domain. Thus, only objects
capable of building their own internal structure can be constructed top-down within nested domains.

A controller may abdicate its power over a domain. When a controller abdicates, its domain shell
becomes transparent and the contents of its domain become contents of the enclosing domain. A controller
may depose a subdomain, which is equivalent to forcing the subdomain to abdicate.

When an object dies, there is no way for it to be resurrected, short of external intervention by the
controller of the domain in which it resides. To ensure that all domains always have a controller, HPC
treats the death of a controller subtree as an abdication. This takes place even though other objects within
the domain may continue to execute. A controller subtree is dead if there are no non-controller processes

within it and its nested controller subtree (if it exists) is also dead. Since the implementation base of all
objects is self-controlling processes, this definition ultimately reflects the state of primitive processes.

To see how death and abdication are related, consider again Figure 2. If PI dies. C2 can restore it.
If C2 dies, domain D2 is removed, leaving Cl an ordinary shell. The controller privileges or C2 are
removed. Since D1 now includes the contents of Cl, P1 may restore C2 and reinvest it as the controller of
C1. This will recreate the domain D2. If both P1 and C2 die. domain D1 is removed, leaving SO an
ordinary shell and the controller privileges of Cl are removed.

For security and protection reasons, it is unacceptable to allow a deposition or an accidental controller
death to reveal the internal structure of an object that wishes to remain entirely abstract. Therefore, HPC
allows controllers to choose between two actions to be taken by the system automatically upon abdication.
whether forced, voluntary or accidental. One option is to preserve all the internal structure that exists at
the time of abdication and make this structure part of the enclosing domain. The other option is to purge
all internal structure before destroying the domain boundary. Using the purge option with images that
specify level I controllers. arbitrarily complex objects can be created that are indistinguishable from
primitive processes to outside controllers.

To summarize the relationships among the operations that manipulate processes and controllers,
animate implies an invest, abdicate always implies the last specified of purge or preserve, depose forces an
abdicate, die implies an abdicate, and kill forces a die with the purge option.

4. Structured Communication Interfaces

A single unidirectional unreliable channel between two objects is clearly a minimal communications
mechanism. HPC provides a number of structuring tools to construct more specialized mechanisms.
Provision is made for several logically distinct interfaces, the use of a variety of protocols or data
representations, a dynamically varying number of related interfaces, multicasting, and the encapsulation of
a number of related, heterogeneous interfaces as a single abstract interface.

Each interface has three fixed properties that are recorded by the HPC kernel and available to the
controller: role, type name, and structure. Two interfaces can be connected by a channel only if they have
compatible roles, equivalent types, and matching structures. Role compatibility and type equivalence are
checked by the individual controller responsible for establishing the connection. Structural matching is
checked by the kernel because it has a direct effect on the kernel implementation of message passing. Both
roles and types, however, are higher level concepts that are user-defined and, therefore, must be checked at
a higher level.

lw

:,......-...........,



- ' N- " . I-. 71 W. V- W 7 - -w_

11

In addition, there are two properties of interfaces that vary: connectivity and liveness. These
properties allow controllers to do a more sophisticated job of managing an application than they could in
the absence of the information.

4.1. Roles
Each interface has some particular function or purpose. Since objects must be interconnected in ways

that make sense, HPC provides a way for controllers to determine the logical role that each interface plays
in the operation of its containing object. Examples of roles include the Unix notions of stdin (standard
input), stdout (standard output), and stderr (standard error).

HPC records a label for each interface that is made available to the corresponding controller(s), but
does not interpret the label in any way. This label indicates the role of the associated interface. Our intent
is that object designers will use human-sensible strings for role labels, but there are no hard restrictions on
their use.

Role compatibility imposes a user-defined semantic interpretation on interface connections. Fach
controller is free to interpret role labels as it sees fit and is not required to understand any particular role.
Obviously, the more roles a controller understands, the better it will do its job of creating and maintaining
complex applications. One or more conventions for interpreting roles are to be expected so that controllers
can be written without prior knowledge about specific roles. As an example, a trivial controller could be
written that would only connect interfaces with roles of the form my-input to interfaces with roles of the
form my-output. Such a controller need not know anything about the application, only the strings input
and output.

A software development system that supports strong typing and separate compilation might generate
distinct roles for each interface and use only controllers that validate roles against a database before
establishing connections between objects. Another good use for roles and separate interfaces would be to
distinguish the various entry points of an object accepting remote procedure calls or Ada-style rendezvous.

Role names are unique among the interfaces of an object even though there may be cases where there
are no discernible role differences, for example, the two inputs in a merge routine. In most such cases, the
controller will impose a deterministic schedule that suffices to differentiate the roles. In those cases where
the roles are truly equivalent, a multiplex interface (described below) is probably appropriate.

4.2. Type Names
While not strictly necessary, we distinguish between the logical role of an interface and the concrete

interpretation of messages sent or received on an interface. Separating roles and types maintains the
independence of communication content and communication protocols. A controller can connect two
interfaces with compatible roles and equal types without interpreting the particular type. This would be
more inconvenient if the labels for the role and type were merged into a single piece of descriptive
information.

As with roles, HPC records a type name for each interface that is interpreted only by controllers. The
type name indicates the protocols and formats used in communication through the interface. Self-
describing datagram and reliable bytestream are examples of type names.

Again, no controller is obligated to understand any particular type name. Simple controllers can
check type names for strict equality to ensure that messages sent by one object will be correctly interpreted
by another. More sophisticated controllers can interpose protocol or representation translation objects
between the objects that are to be connected. For example, a reliable transport protocol object can be

!



12

interposed by a controller between two communicating objects that otherwise would use an unreliable
communication protocol (see Section 7). Such translation is completely transparent to the objects involved
and depends crucially on the type name information being available to controllers.

As for roles, a sophisticated software development system can exploit the type name information to
make available at run-time a detailed description of the language and run-time dependent message types.
remote procedure call arguments and return types, and so forth. This can be used by controllers to help
ensure the sensible interconnection of objects. Type name information is also useful when debugging
because it indicates the proper interpretation of messages intercepted at any given interface.

4.3. Structures
For most interfaces, the only relevant structure is the direction of communication (input or output).

It is possible, however, to construct more complicated interfaces. Structural matching ensures that inputs
are connected to outputs and that previously connected interfaces are not doubly connected.

Unlike roles and type names, the structure of an interface is interpreted by the HPC kernel.
Interfaces may be connected only when they have exactly complementary structures. The structure of an
interface is what HPC uses to determine how to deliver messages.

4.3.1. Endpoints and Extensions
For each of the four interface structures, simple, bundle, multiplex. and multicast. there is a concrete

version where the internal details of the structure can be examined ana an abstract version where these
details are hidden from view. Each view of an interface may independer fly present either the concrete or
the abstract version. A view presenting a concrete version of a structure is an endpoint. while an abstract
view is an extension. The names are motivated because a useful communication link will have two
endpoints separated by some number of channels extending the connection between them.

Extensions provide a reduction in complexity and an important improvement in security. A
controller may make a connection of arbitrary complexity between two objects without having to cope with
that complexity. We can ensure that all necessary logical connections are made with a single operation. At
the same time, the status of the extension views can be reported simply, in terms of the entire structure and
independently of the states of its individual components.

The endpoint/extension distinction is analogous to the shell/domain distinction for protection
purposes. Only the controllers that need to know the internal structure of a complex interface are allowed
to observe it or modify it. The operations that are legal for endpoints are not legal for extensions and vice
versa. The operations on endpoints all modify the internal structure or state of a complete communication
path. This information should be hidden as unnecessary complexity from the domains through which the
connection passes. The operations on extensions all modify channels between two interfaces without regard
to their type or internal structure and are inappropriate for use on endpoints.

Endpoints differ from extensions in another way. At some point the HPC notion of interface has to
be integrated into run-time support for primitive processes. It is essential for at least simple endpoints to
receive such support, since processes are the terminals that exchange messages. The view of an interface
within a process (like a file descriptor or a similar structure) should be an endpoint. Extensions, on the
other hand, make little sense within a process, because they can be connected only to other extensions by
channels and we have no intention of extending HPC structuring to within a single process.

Distinguishing endpoints of various structures facilitates the implementation of message transport. As
is discussed in section 8.3, messages are not physically forwarded over every channel and through every

', ,,',O.,', '-C- ,": " -" '5: , -'-"-:"-':-, ," " .,', "?:- -,- , .'-- .', -, :: :,. ""'" '" "" " " " " "- "" "" "" "-'-"



13

interface. Instead, HPC maintains enough information about the channels joined at interfaces to recognize
when end-to-end connections have been established. Subsequent operations at the endpoints, like sending a
message, may be dispatched directly to the opposing endpoint. Most operations on endpoints will have no
effect if there is no end-to-end connection. The state of an interface, described below, also depends on an
end-to-end connection.

Let us stress the distinction between a channel, a chain, and an end-to-end connection. A channel
connects exactly two views and crosses no shell boundaries. One or more channels which are joined
through interfaces form a chain. When the interfaces at the ends of a chain are both endpoints, there is an
end-to-end connection. A controller can directly observe only channels. HPC maintains chains to
determine when connecting a new channel will create an end-to-end connection, but chains are completely

* invisible to controllers. An end-to-end connection can be observed only indirectly, through the liveness
property of an interface.

4.3.2. Simple Interfaces
A simple interface, consisting of a view that accepts messages and a view that delivers them, provides

a single directed stream of messages. The direction of a simple interface is specified when the interface and
its containing shell are created. All the more complex interfaces are ultimately based on simple interfaces.

The send, receive, and select operations may be applied to the endpoints, but not the extensions, of
simple interfaces. The intent is that messages may be inserted or removed from a stream only at the ends.
Besides introducing simplicity, this allows an HPC implementation to reduce the cost of message transport
for connections with many channels joined end-to-end to the cost of a single point-to-point transfer because
messages may never be observed at any of the intervening interfaces (extensions). We place a further
restriction on these operations. They are intended only for use by primitive processes on endpoints within
that process and will be provided by the run-time support for HPC. In particular, we provide no way for a
controller to send a message through an endpoint that is part of a shell that currently has no process
animated in it.

Send and receive are both non-blocking and transfer messages by value between an interface and a
process. They place no interpretation on the contents of a message. Select takes a set of interfaces and
blocks until a message is available for receipt on at least one of the interfaces or a specified timeout has
expired. The reason for unblocking is returned to the process that executed select.

The connect and disconnect operations may be applied to the extensions, but not ihe endpoints, of
simple interfaces. To connect two simple interfaces, the views being joined by a channel must have
complementary directions.

4.3.3. Interface Bundles
An interface bundle is a collection of interfaces, analogous to a record in programming languages.

The components of a bundle may be interfaces of arbitrary structure and direction. Bundles can be used to
provide bidirectional communication in a single connection by bundling two simple interfaces of opposite
direction. Complex protocols that require out of band data could be implemented using bundles of several
interfaces to separate message streams. Objects with logically complex interfaces can encapsulate the
complexity and group simple interfaces by function.

The components of a bundle are fixed when the interface and its containing shell are created. The
order in which they are specified is significant. When two bundles are connected, the corresponding
components are connected. The correspondence is determined by the order of definition. This leads to a

°I



V,,. , T .

14

simple construction with some inconveniences. While bundles are an obvious choice for bidirectional
communication links, the structures at both ends can not be identical. That is. the simple interface for
input must come first on one end and last on the other end. We do not have enough experience to
evaluate the extent of this inconvenience. We suspect there is already asymmetry in most object
relationships and that the inability to provide completely symmetric connections is not a serious drawback.

Figure 3 illustrates this difficulty. In Figure 3. a wide gray line indicates a complex channel and
dashed lines indicate subchannels connected to the components of the complex interface. The component
interfaces of a complex interface are drawn as small interface boxes directly on the body of the complex

*interface. The shells containing the interfaces in this and subsequent figures are drawn as bold lines
* separating the two views.

The index operation is common to the three complex interface structures. It takes an endpoint and an
index and returns the interface component that corresponds to the index (analogous to record selection).
This allows HPC to distinguish the properties of the entire bundle from the properties of a particular

". component of the bundle. The index operation may be applied to the endpoints, but not the extensions, of
. interface bundles. The intent is to restrict any access to the internal structure of a complex connection to

the endpoints.

The connect and disconnect operations may be applied to the extensions, but not the endpoints, of
interface bundles. To connect two interface bundles. the views being joined by a channel must have the

same number of components and the structures of each of the components are compared for compatibility
as though they were being connected individually. Interfaces in a bundle are connected only when an
end-to-end connection is established between two bundle endpoints. All components of one endpoint are
then given end-to-end connections with the corresponding components of the other endpoint.
Disconnecting a pair of interface bundles, disconnects all the components.

Even though an interface bundle is analogous to the record as a structuring tool, the indices for
bundle are not names, as is common for specifying record fields. Since each component of a bundle carries
a role, it should be straightforward for a controller to determine which numeric index should be used to
select an appropriate component.

While we describe the index operation as returning an interface, it is not necessary to use index before

each operation on an interface in a bundle. Index is simply a way to obtain the names or handles of the
component interfaces, which would otherwise not be presented to a controller. Once the name of a
particular component interface is known to a controller, it is not necessary to use index again to find that
name.

The index operation should not be thought of as creating interfaces. All the component interfaces

exist, just as all the fields of a record exist, but we abstract away that level of detail until it is explicitly
requested. In a language run-time package that supports interface bundles directly, the programmer should
be able to specify bundle components by name and never deal with the index operation directly.

4.3.4. Multiplex Interfaces

A multiplex interface is analogous to an array or, more precisely, a table with dynamically varying
indices and homogeneous components. A multiplex interface begins with no components. The role, type
name, and structure of all its potential components are fixed when the multiplex interface and its containing
shell are created. Component interfaces are created and deleted dynamically. This is the type of interface
HPC uses for multiplexed servers, hence the name.

,. . ... ............. .. . * .. *....-....-..- .-..........................



Shell Shell

Simple Simple
Endpoint Endpoint

OUT -- - -- 4 IN
i IN -I -OUT

Bundle Bundle Bundle Bundle
Endpoint Extension Extension Endpoint

Figure 3

d

_ . .I' 't , • _% ""N "' , % / .". . + "+% +

*0.~~.b, * -.. ii- :-..



15

The index, new, and delete operations may be applied to the endpoints, but not the extensions, of
multiplex interfaces. The index operation behaves similarly for multiplex interfaces as for interface
bundles. However, the valid indices for a multiplex interface change dynamically.

* The new operation takes a multiplex endpoint and creates a new component interface. The controller
is notified that the new interface has been created. If a connection exists between this endpoint and some
other elsewhere in the system, as shown in Figure 4a. a new component interface is created for the second
endpoint and an end-to-end subchannel is established between the two new interfaces as shown in Figure
4b. The controller of the second endpoint is notified about the (externally initiated) creation of a new
interface. If the multiplex endpoint does not have an end-to-end connection with another endpoint, the
new component interface is created but no subchannel connections are established for it, as shown in
Figure 4d.

The delete operation takes a multiplex endpoint and an index and destroys the corresponding
component interface. Any connections associated with this component are unmade. If the component has
an end-to-end connection, as shown in Figure 4b, and the component is deleted, the subchannel between
the components is removed but the component on the second endpoint is not destroyed. The result is
shown in Figure 4c. As will be described below, the controller for the second endpoint can detect the loss
of the connection to its component and delete the component interface independently. If the component
interface on the right in Figure 4c is deleted, we return to the situation shown in Figure 4a.

Connect and disconnect may be applied to the extension, but not the endpoints, of a multiplex
interface. To connect two multiplex interfaces, the views being joined by a channel must have compatible
component structures. Component structures are compared as though one of each were being connected.
Disconnecting a pair of multiplex interfaces disconnects any connected components.

When a connect establishes an end-to-end connection between multiplex endpoints, any component
interfaces of those endpoints that were previously connected end-to-end as shown in Figure 4b are
reconnected. Due to the restrictions on when new and connect create connections between component
interfaces, subuhannels of a multiplex interface have a memory of their partners despite disconnections of
the entire interface and will only recognize those partners. This is analogous to the correspondence rule for
components of interface bundles. Again, we chose a simple rule that provides the necessary function with
minimal, but acknowledged, inconvenience.

The primary inconvenience with our correspondence rule for multiplex components is what we call
the tap problem for debugging or monitoring multiplex channels. One would like to transparently interpose
a monitoring object along a multiplex end-to-end connection that could tap all the subchannels of the
connection. HPC lacks the ability to do this for two reasons. First, when a multiplex connection is
disconnected and reconnected to a different endpoint the currently existing subchannels are inaccessible,
even at the new endpoint. Second, although the monitoring object can readily keep track of all the new
subchannels created at either of the endpoints during the monitoring session and create corresponding
subchannels to the other endpoint to forward messages, there is no way to remove the monitoring object
and join the corresponding pairs of subchannels end-to-end. The tap problem is surmountable if one is
willing to disrupt ongoing communication between two partners when a tap is inserted or removed, or if
one leaves the tap in place over the life of the connection being monitored. We note here that connect
could be extended in a straightforward way to allow a controller to specify which subchannels currently
terminated at a multiplex extension are to be joined to one another. However, all of the particular versions
we have examined lead to severe consistency problems.

............



(a)

Multiplex Multiplex Multiplex Multiplex
Endpoint Extension Extension Endpoint

Component Component
Interface Interface

(b)

Multiplex Multiplex Multiplex Multiplex
Endpoint Extension Extension Endpoint

Component
Interface

(c)

Multiplex Multiplex Multiplex Multiplex
Endpoint Extension Extension Endpoint

Component
Interface

(d)

Multiplex Multiplex Multiplex Multiplex
Endpoint Extension Extension Extension

Figure 4

r.



J 4 VFVVk W Wm. UW W - N fW% -%r. "T I N WU- -V 7' XP IU.P3a"

16

4.3.5. Multicast Interfaces
A multicast interface fulfills the need for one-to-many and many-to-one communications in a different

way than a multiplex interface. A multicast interface takes several streams of messages, merges them into a
single stream, replicates the stream, and forwards it to several destinations. Depending on how much of
this function is used, a multicast interface can provide one-to-many, many-to-many, and many-to-one
message delivery. Like a multiplex interface, the multicast interface is created with no components and all
its dynamically created components have the same fixed structure.

Unlike interface bundles and multiplex interfaces, multicast interfaces do not need to be used in
pairs. The extension view of a multicast interface has the same structure as an extension of one of its
components. Multicast interfaces could always be paired without a loss of function, but this would be
inconvenient in the many-to-one and one-to-many cases. It would also be impossible to provide reliable
services through replication transparently to clients.

The index, new, and delete operations may be applied to the endpoints, but not the extensions, of a
multicast interface. These operations perform similarly as for multiplex interfaces. The major difference is
that there is only one connection from the endpoint to another destination: there are no subchannels. All
the components of the endpoint share this connection. Messages arriving at any of the components are sent
out over the shared connection. Messages arriving on the shared connection are replicated and one copy is
sent out through each of the component interfaces.

The connect and disconnect operations may be applied to the extensions, but not the endpoints, of a
multicast interface. As mentioned, the extension view of a multicast interface is an extension with the
structure of a component of the endpoint. Thus. a multicast interface with an endpoint view and an
extension view serves for one-to-many (see Figure 5a) and many-to-one (see Figure 5b) communication.
Two multicast endpoints, either the two views of a single interface (see Figure 5c) or connected by an
arbitrarily long end-to-end connection, serve for many-to-many communication.

4.4. States
Besides its fixed role, type name, and structure, an interface has two properties that can change

dynamically and unexpectedly.

4.4.1. Connectivity
Connectivity is simply the presence or absence of connections on the visible view(s) of a simple

interface and the currently valid indices for a complex interface. Since multiple controller processes in a
single controller subtree may create or destroy channels independently of one another and the new
operation may create new indices for a multiplex interface from another domain, the controller subtree is
notified about changes in the connectivity of interfaces in its domain. In all cases, connectivity for a view is
based only on visible status.

In the absence of inconsistencies created by partition and merge, the connectivity of a simple interface
is either disconnected or connected to I, where I is another interface. The connectivity of a complex
interface is the set of currently valid indices.

4.4.2. Liveness
Liveness is the only property controllers can observe about conditions outside their domains.

Liveness indicates whether or not an interface is part of an end-to-end connection. A view of an interface
is dead when no endpoint is connected to the interface through its other view, alive when an endpoint is



.... vwAFYJw -PIP -. V %11 -w.-p -u- - -

Messages
Received

Messages
Sent

-+1,2,3

(a) 1,2,3 - .. 1,2,3

-+1,2,3

Multicast Multicast
Extension Endpoint

Messages
Sent

Messages
Received

(b) 2,1,3 4-4.. 2

4-3
Multicast Multicast
Extension Endpoint

Messages Messages
Sent Received

1 - 42,1,3

(c) 2 D4- 2,1,3

3 -- 42,1,3
Multicast Multicast
Endpoint Endpoint

Figure 5



17

connected, and suspended when it is unknown whether or not an endpoint is connected. As for
connectivity, when the liveness of an interface changes, the controller is notified.

Knowledge of liveness is essential for distributed applications that wish to avoid inconsistency by
limiting their operations during a partition. It is also crucial in allowing a controller to clean up state when
an external client has died or become disconnected. Basic flow control functions require liveness or its
equivalent to detect when a message may be sent with some expectation of being delivered. Applications
that are sensitive of their security can use liveness to detect when their communication partners have been
disconnected and potentially hostile partners connected.

Liveness information is computed locally at isolated interfaces and the ends of chains and propagated
towards the other end of a chain. One view of an interface is dead if the opposite view is a disconnected
extension, alive if the opposite view is an endpoint, and suspended if the opposite view is not visible due to
partition. If the opposite view is a connected endpoint, this view inherits the liveness of the (third) view at
the other end of the channel. These rules are illustrated in Figure 6a. There is one exception to the rules
as just given: If a simple endpoint is contained in an empty shell, its opposite view is dead. A simple
endpoint must be within a primitive process for its opposite view to be alive.

In Figure 6b, we show more complex examples of how liveness is inherited. Note that liveness of
complex interfaces is computed independently of the liveness of their component interfaces and that
different components may have differing liveness properties. As a consequence of the behavior of complex
interfaces, when a complex interface is dead all its components must be dead. Similarly, when it is
suspended all its components must be suspended. However. when it is alive, each of its components may
have a different liveness.

4.5. A Comparison with Links

It is appropriate at this point to compare the apparent complexity of HPC's communication structures
with the mechanism variously known as links or ports. In a typical link-based system, a link is a medium
of reliable unidirectional communication with access control and naming provided by capabilities. All
interprocess communication is accomplished by sending messages along links. The rights to send or receive
messages on a link are protected and may be transferred from one process to another.

Most link-based systems have been heavily influenced by the Demos6 operating system. Some, like
Demos/MP t 3, Perseus 14, Arachnet 5, and Charlotte16 are fairly direct descendants of Demos. Others, like
Accent9 are less directly derived, but share many features with close relatives of Demos.

Link-based systems are currently quite successful and popular. Some of their popularity can be
attributed to the apparent simplicity and power of their single communication mechanism. To allow two
processes to communicate, one simply creates a link and gives the rights to each end to the two processes.
Why does HPC provide so many different communication structures? Why should a designer deal with the
additional complexity of HPC communication?

Our response is that the interrelationships among elements of a distributed application are not simple.
The apparent simplicity of links arises because links hide all the interactions. HPC does not add any
additional complexity. It does make the complexity explicit. Moreover, the way arious elements are
combined into a complex application are visible not just when the system is designed. but also at run-time.
In a link-based system, these interrelationships are simply inaccessible to anyone wishing to create an object
resembling a controller.

To make the comparison of communication structures a little fairer to link-based s stems. consider
HPC without nesting of objects. That is. assume that we have only primitive processes in a flat space. Two

S - . .. . . . . . .

. . . . .. . . . . . . . . . . . . . . - .



Endpoint Extension Extension Endpoint
Alive Alive Alive Alive

(a) 4
Endpoint Extension Extension Extension
Dead Alive DedAlive

Extension Extension Extension Extension
Dead Dead Dead Dead

Simple Simple
Extension Extension
Dead Alive

Simple
Interface

PROCESSAlive

* (b)-.

Simple
Interface

* Endpoint Extension Da

Multiplex Endpoint
Endpoint Alive
Alive

Figure 6



18

simple interfaces and a channel in HPC are the immediate competitors of the link. In HPC. we can see
whether or not two processes are connected by a channel. We can take several processes and transparently
connect them into a useful assembly. When a process fails, we can replace it and connect its former
partners to its replacement without their active cooperation. We can dynamically restructure or extend an
application to meet changing demands by creating or moving worker processes transparently. In a link-
based system, we can not do any of these things because of the way links and all operations on them are
handled through capabilities. Only the processes that hold rights to a link know that the link exists. Even
these processes do not know what other processes hold rights to that link. There is no way to determine
what the relationships among several processes are, even when they all have links with one another.

Now consider interface bundles. Link-based systems provide no direct support for grouping related
links. Obviously, each process can keep track of which links belong to which group, but groups of links
can not be created, transferred, or destroyed as a group. Each link in a group must be manipulated
individually. HPC reduces the amount of complexity that a designer must handle by giving support to the
abstraction of grouping communication paths at the operating system level.

A multiplexed server in a link-based system normally makes a single request link globally available.
Clients wishing to set up communications with the server obtain send rights to the server's request link,

create a new link of their own, and pass the send rights to the new link in a message over the server's
request link. The server will create a third link and send its send rights in a message over the client's link.
The client will then release the rights to the server's request link. Subsequent communication between the
client and the server will take place over the two newly created links. HPC's multiplex interfaces make this
kind of interaction much simpler. A server uses a multiplex endpoint. The components of the multiplex
interface are bundles of two simple interfaces. A client creates a new component and connects to the new
interface bundle with a single connect. The server is notified when the new interface has been created and
may connect to it whenever it choses.

Most link-based systems do not have any provision for multicasting or broadcasting. This facility is
necessary for reliable applications based on replication. The multicast interfaces of HPC provide this ability
and integrate the control and management of multicast groups closely with the rest of the communication
structures. Moreover, a client using an internally replicated server need not know that multicasting is
involved. A multicast extension is just an extension of one of its components, so a multicast group is
addressed in HPC transparently, as though it were a single element. The choice of explicit message
replication or multicasting hardware is hidden inside the HPC kernel.

The structured interfaces of HPC do not introduce any complexity into programming distributed
applications. They do force the designer to specify the complexities in a system. In return, HPC permits
the dynamic observation and manipulation of interprocess communication paths. The structured interfaces
of HPC also provide direct support for abstracting away the complexities in a system. The interactions at
each level of a system can be specified without having to worry about the levels above and below.

5. Consistency and Reliability

5.1. The Nature of Distributed Consistency
Observations about the structure, state, and behavior of a system are inherently relative to the

observer. Changes in one section of a partitioned system will not be visible to all observers. This is the
principle of local observability. We will assume that all observers at a given site have the same physical
constraints on what they may observe, although we will place additional constraints on them for reasons of

%**.I *. . . . . . .



VTW -1 .-- I. W7 -4 WC -4 Ora -a QT T w V. W.7.-

19

abstraction or security.

Change, partition and sharing are the major ingredients in the recipe for inconsistency. In the
absence of change, all observations are trivially consistent and trivial to accomplish. Any feature of the
system that is immutable may be known uniformly throughout the system without the need for physical
observation. The operating system is typically such a feature.

In the absence of partition, all observations may be made consistent in a straightforward fashion by
globally simulating a single site. The problems of ensuring consistency by providing serializability or
atomicity are understood. Partition is a more serious obstacle to assuring consistency because we have no
way to coordinate the operations undertaken in disjoint partitions.

We assume that the topology of each partition is strongly connected, a useful simplifying assumption.
While we can not always globally simulate a single site, the property of strong connectivity allows each
partition to simulate a single site. The assumption can always be made to hold by simply breaking a
partition for which it is not true into individual sites. Whether this is necessary or not depends on the
underlying communications topology.

Given that each partition may act as a single site, we can avoid inconsistencies within a partition.
This confines the problem of detecting and resolving inconsistencies to the procedures carried out when
partitions are merged.

In the absence of sharing, all observations are trivially consistent because only one observer may look
at a given piece of the system. In HPC, and other systems, sharing occurs in a number of places and
fashions. There are three major forms of sharing in HPC:

(1) Each controller subtree has potentially many principal processes, all of which share control over the
members of a domain.

(2) There is explicit sharing of some objects among several domains (see Section 6).

(3) There is implicit sharing of shells and interfaces between the domains on either side of a domain
boundary.

We have not yet explored the consistency consequences of explicit sharing. It is clear that explicit
. sharing has all the same consistency problems as multiple principal processes and implicitly shared

interfaces, as well as its own characteristic difficulties. Hopefully, the solutions for the more constrained
problems will be easily extensible to the more general problem.

In our view, global consistency in a distributed system is a myth. Either the system is really a
centralized system or global inconsistency is inevitable. Global consistency requires that changes only take

. place when they may be globally observed. While we can prohibit voluntary operations (and thus change)
", during a partition, we can not prohibit failure. Even if we disregard failures, to ensure global consistency,
. the complete loss of site autonomy is required. Furthermore, system availability is less than the availability

of any of its components. Such a system has all the weaknesses of its components, rather than their
strengths. A more realistic and certainly more interesting question is how to live with global inconsistency.

Consider an object as an implementation of some specific abstraction. As long as its internal state is
consistent, there is no problem with inconsistent service. If the object is distributed and continues to
operate while internally partitioned, the pieces of its state may become inconsistent with one another. This
is not yet a problem because each partitioned piece of the object may independently offer service that is
consistent over time and over all clients in its partition. However, when the separate partitions are merged,
the object can not offer completely consistent service. The object may provide service that is consistent

,.. . . . . . . ... ; .. :.- . .-. -' .-. .N :. . : -...-.-...... =--.,; ,,..



20

over time for each client or service that is consistent over all clients (in a partition) at any given time.
These choices are generally exclusive.

Since we can't specify complete consistency over both space (users) and time in a distributed system,
our specifications of the abstractions provided by an object must allow some form of inconsistency. If we
insist on consistency over all clients in a partition, we must specify that the object's behavior over time for a
given client will be inconsistent. The abstraction implemented by an object is deficient if it does not
include a protocol to inform clients of such inconsistencies between past and future behavior. If the
protocol consults clients of the abstraction about the preferred reconciliation, so much the better.

The LOCUS file system17 can be considered to be a distributed application implementing a file
abstraction with specific operations and semantics on those operations. Its specification explicitly deals with

-' partition and merge and gives rules for when unequal files are consistent and when they are not. The client
is not only notified of the problem, but given sole responsibility for dealing with it. Since LOCUS's
internal state is described in terms of i-nodes, version vectors, and disk blocks, inconsistency is discovered
in terms of these representations. The abstraction is in terms of files and even during reconciliation the
client deals with the abstract files. We stress that the abstraction defined for this distributed application
explicitly defines procedures for consulting its clients about inconsistencies and their preferred
reconciliation.

Obviously choosing an abstraction that requires the fewest conflicts between space and time
consistency reduces the number of times the client must be consulted concerning inconsistencies. Such
convenient abstractions can not always be chosen. We may have to meet the demands of clients that do
not want to deal with inconsistency. The client pays for such abstractions by lost availability and
autonomy.

5.2. The Orphaned Domain Rule
We have discussed how a controller is responsible for managing the internal structure of its domain

and how HPC responds to the death of the controller subtree. We now examine how partition of the
controller subtree is handled.

We say a domain has been orphaned in a given partition when none of the domain's controller
processes are in the partition. A primitive process is its own controller, so a primitive process is orphaned
in a partition when its site is not in the partition. Obviously, whether or not a domain is seen to be
orphaned depends on what partition the observer is in. The controller subtree of a domain may be split
among several partitions. As long as at least one controller process is in a partition. the domain is not
orphaned in that partition.

All interface views of an orphaned domain are given the suspended state. This state propagates in
both directions along any connections through the domain. The effect is to suspend communication with
an object during any period in which there is no control component. Another way of describing the same
effect is that service is halted whenever there is no responsible party present.

There are a number of motivations for specifying this behavior. First, when a domain is orphaned,
all control over the behavior of the domain's members is lost. An application that provides a globally
consistent service at the expense of availability during partition must be able to limit the way its
components interact with external clients. The orphaned domain rule creates firewalls that prevent the
development of inconsistent behavior by prohibiting orphaned domains from interacting with clients in any
way.



21

Second, the orphaned domain rule simplifies many of the rules for maintaining HPC consistency.
The example of Section 5.3.1 shows how the number of different kinds of structural inconsistency can be
dramatically reduced.

Third, the problem of orphans in transaction systems and RPC is simple to deal with under the
orphaned domain rule. If an object becomes orphaned from its controller, either the calling site for RPC
or a transaction coordinator, it may continue to perform computations but it will be prohibited from
communicating with any other objects. The orphan may be cleaned up by its controller if the controller is
still alive when the partitions are merged, or cleaned up automatically by HPC if the controller set the
purge option.

The strength of the orphaned domain rule is also its major drawback. The members of an orphaned
domain may interact with one another even though they are unable to interact with objects outside the
domain. This allows useful computation to continue so neither structure or application state need be lost
over partitions and merges. However, communication between worker processes inside a domain and their
external clients is prohibited even when both ends of an end-to-end connection are within the same
partition. We pay for the firewalls of control with potentially lost availability. The appropriate response is
to use distributed controller subtrees that have at least one process on every set of sites that can support a
viable subset of the application. Given this response, we do not find the rule's drawback more than a
minor inconvenience.

5.3. Consistency Of HPC
HPC is intended to run complex applications despite partitions and failures. Clearly HPC is subject

to the same cautions and limits as any distributed implementation of an abstraction. In this section we look
at two examples of how HPC resolves innocuous inconsistency upon merge and reports the (inevitable)
development of conflicts to its clients.

We could have followed the LOCUS example and kept a history of each element of structure (shell.
channel, domain, etc) to determine what the dominating, or most recent, version of the system is. We
chose to resolve inconsistencies solely on current state without considering past states. The rules we
describe here are associative in the sense that any number of partitions may be merged in any order with
the same final result. This makes merging more than two partitions at the same time a safe and simple
operation.

We also adopted a policy of removing as little as possible from partitions being merged. In the
simplest case, two partitions may conflict because an element of structure, say a channel, exists in one
partition but not the other. We include the disputed channel in the merger of the partitions. If any
previously partitioned part of the system was making use of the channel, it may continue to do so. One
consequence is that shells or channels can be deleted in one partition, only to reappear later when another
partition is merged with the current one.

5.3.1. Example: HPC Simple Interface State
As discussed in Section 4, the connectivity and liveness observed for each view of an interface may

change. Connectivity depends solely on events occurring within the domain to which the view belongs.
Liveness depends solely on events outside the domain. When the interface is alive or suspended the HPC
kernel maintains additional, unobservable state for the interface. The endpoint associated with the interface
is recorded by HPC and used in message transport. This additional state must be kept consistent to assure
consistent behavior, even though it is not directly visible to the controller of a domain. In this example we

.'_. - '' . . -' ' ' ' ' ' - L , .',, . " " ' ." " " ' * ," b ," ' " ," " " ' • ".. * ."* .' ' "i - . " - - -



22

show how HPC handles consistency for simple interfaces.

When the controller subtree for a view of an interface is partitioned, it is possible that the status of
the view will be observed differently in different domains. When merging two (or more) domains HPC
must detect and resolve the inconsistency. The method used for detection is not defined by the HPC
abstraction, so we will concentrate on reconciliation. We must merge all the changeable state associated
with an interface.

Table I shows the possible combinations of connectivity that may be observed in two partitions before
and after merging the partitions. D indicates the interface is observed to be disconnected. Ci indicates the
interface is observed to be connected with a channel to interface i.

Pairs 1 and 2 are completely consistent. Pair 3 is resolved automatically in accord with our policy of
least disruption. The last pair is patently inconsistent. When an interface has been connected to different
interfaces in different partitions there is no principled way for HPC to decide which channel to remove
when merging the partitions. Instead of making an arbitrary choice. HPC reports the inconsistency to the
controller subtree of the domain in which the problem occurs. All connections through the interface are
forced to the suspended state until the controller resolves the inconsistency. The interface can be fixed
simply by removing channels until at most one channel is connected to the interface. Each time a channel
is removed the merge rules can be reapplied to obtain the new state of the interface.

Table !1 shows the possible combinations of liveness that may be observed in two partitions before
and after merging the partitions. D indicates the interface is observed to be dead. Ai indicates the
interface is observed to be active with a connection to endpoint i. Si indicates the interface is observed to
be suspended with a connection to endpoint i, which may be null if no end-to-end connection existed prior
to partition.

Pairs 1, 2, and 3 are completely consistent. Pairs 4, 5, and 6 are automatically resolved in accord with
our policy of least disruption. We note here that Pair 3 will be observed only for complex endpoints. It is
not possible for messages sent in two disjoint partitions to arrive at the same simple (physical) endpoint.
For Pairs 5 and 6 we note that if it was possible to reach endpoint i in one partition, it will be possible to
reach i in the merger of the two partitions.

Pairs 7, 8, and 9 are all inconsistent. We do not report these inconsistencies to the controller of the
observed domain because they will either be resolved elsewhere in the object hierarchy or will not result in
detectably inconsistent behavior and can be ignored.

Table I

Merging Connectivity Observations
Pair Before Merge After Merge

Partition I Partition 2
I D D D
2 Ci Ci Ci3 D Ci Ci
4 Ci CQ Inconsistent

A



23

Table [I

Merging Liveness Observations
Pair Before Merge After Merge

Partition I Partition 2

I D D D
2 Si Si Si
3 Ai Ai Ai
4 D Si Si
5 D Ai Ai
6 Si Ai Ai
7 Ai Aj Case I
8 Si Aj Case 2
9 Si Si Case 3

To resolve the inconsistency in Pair 7, we consider how this state must have been reached. In each of
two partitions, there existed a connection through the interface to a distinct reachable endpoint. Both
endpoints will be reachable in the merger of the partitions. By the orphaned domain rule, each channel
participating in the connections is visible to a controller. Since the two connections have disjoint endpoints,
yet share at least one interface, there must be a connect-connect inconsistency (viz. Table 1, Pair 4) visible
somewhere within the merger of the partitions. This inconsistency will automatically suspend both

*: connections until it has been reconciled at the point of conflict. The controller will observe the interface as
suspended and HPC may safely make an arbitrary choice between the two endpoints. If HPC chooses the
"wrong" endpoint, this will be automatically corrected when the connect-connect conflict is reconciled and
one of the connections is allowed to become active again.

Resolution of Pair 8 is similar. Again, invoking the orphaned domain rule, either there is a connect-
connect inconsistency as in case 1, or there is a visible connect-disconnect inconsistency (viz. Table I, Pair
3) within the merger of the partitions which will be automatically reconciled by HPC. When the latter
situation is resolved, Pair 8 collapses to Pair 5.

In the case of Pair 9. either there is a visible conflict, as in cases I and 2, or the point at which the
two connections to disjoint endpoints diverge is not visible in this new partition. In this last situation, the
controller observes the interface as suspended and HPC may again make a safe arbitrary choice between
the endpoints because neither of the endpoints can be observed in the new partition. Choosing the
"wrong" endpoint will be detected and resolved as soon as enough information to resolve the conflict has
been merged with this partition.

Under this specification, consistent behavior is guaranteed by forcing an interface to the safe
suspended state. In only one case is a controller required to deal with an inconsistency, and all other
potential inconsistencies of behavior have been either reduced to an instance of this single case elsewhere in
the hierarchy or made innocuous by forced suspension of the interface.

5.3.2. Example: HPC Object Hierarchy
HPC ensures a consistent tree structure of shells, within a single domain and partition. However.

when the controller subtree of a domain is partitioned, the internal hierarchy of the domain may be



24

modified inconsistently. Upon merge, a consistent hierarchy must be reestablished. In this example we will
look only at inconsistencies that affect a single domain. Every object (in the absence of explicit sharing) is
supposed to have one parent. An object gets a new parent when the surrounding shell is disclosed or it is
enclosed by a new shell. The controller of a domain may observe the parentage of any object in its
domain.

We can maintain consistency largely because the operations on shells are so limited. In particular,
there are no general tree manipulation commands, only the enclose and disclose operations. Each enclose
operation creates a new, uniquely named shell.

Fable III shows the possible combinations of parentage that may be observed in two partitions before
and after merging the partitions. N indicates the shell is not observed. Ci indicates the shell is observed to
be a child of shell i.

Pairs I and 2 are completely consistent, although pair 1 would probably never be considered during a
merge. Pair 3 is resolved in accord with our policy of least disruption. Pair 4 is inconsistent. The
controller is notified of this inconsistency. Until it is resolved, all connections passing through the object
are suspended and the only operations that may be applied to the object are kill, depose, disclose and a
special reconciliation operation, detach, that is used to remove the object from the tree of a specified
parent. An object may be detached from a parent only when it has more than one parent.

Figure 7a depicts a parentage inconsistency. Object C was enclosed by shells P1 and P2 in two
different partitions. When the partitions were merged, the conflict became apparent. If we detach C from
P2, we are left with the situation shown in Figure 7b. The detach operation is somewhat provisional.
Further development of explicit sharing of HPC objects may suggest a more general replacement.

When a shell with a parentage conflict is disclosed, all its children inherit its parentage conflict. This
may multiply the number of conflicts but there does not seem to be a reasonable alternative. If disclose is
prohibited, we are unable to separate the contents of an object according to the partition and role they were
created in and reencapsulate them. The need for such fission can be avoided by never creating anything in
a shell that existed before the controller subtree was partitioned, but this runs counter to the basic HPC
approach of high availability even during partition.

5.4. Provisions for Reliable, Consistent Applications
HPC provides support for reliable applications in the areas of communications, replication, and

distribution. The design obligation was not to provide high-level reliability mechanisms like transactions,

Table III

Merging Parentage Observations
Pair Before Merge
,.Partition 1 Partition 2

1 N N N
2 Ci Ci Ci
3 N Ci Ci
4 Ci C Inconsistent

-2

..- o" o--. -o .."- ."...o......o' - Oo"....:u§ K -,§ "',- ,.s '.*~>. i. - . . .'° .... "* ? . * .. ' - . . . . o° -' " ." '



-- -- - ----

S IP

F-cl P(a)

Sc

Figure 7



/I

25

checkpoints, or triple modular redundancy directly, but rather to provide the tools to build these somewhat
specialized mechanisms. Since HPC makes partition visible to controllers and all resources can be
encapsulated as an HPC object, there is also basic support for building consistent applications.

Applications that must be robust against single point failure require some form of broadcast or
multicast mechanism. If there is no primitive broadca:, either the kernel or a user process may simulate
multicast by replicating messages and sending them to all the individual members of the multicast group.
This works but ordinarily requires clients of reliable applications to be aware of the internal organization of
the application. Ideally, a multicast group would look just like an ordinary destination to a client. In HPC
we achieve tight protection and a clean separation between multiple delivery and addressing through
multicast interfaces. The kernel takes care of any necessary replication.

One can easily construct in HPC the troupe mechanism described by Cooper 8, which uses replicated
groups of both client and server processes with every process in one group sending a message to every
process in the other group. Each troupe may be implemented as an HPC object with a multicast interface.
Components of the multicast endpoint inside the shell would be connected to the members of the troupe.
Two troupes would be connected simply by connecting the multicast extensions outside their shells. Each
troupe would have a similar interface for communication with the ringmaster. The ringmaster would have
a multiplex interface to communicate with the dynamically varying number of troupes and each component
of its multiplex interface would be a multicast extension. More restricted mechanisms, like triple modular
redundancy, are even easier to construct.

Figure 8 illustrates two troupes and the ringmaster. We omit the controller details and the internals
of the ringmaster for simplicity. Notice that troupes all have similar external interfaces, no matter how
many replicated members they have. Similarly, each member of a given troupe has similar external
interfaces. The complexity of replicating members of a troupe is isolated within the shell of the troupe,
while the complexity of a variable number of troupes and their interconnection is isolated at the next
higher level. Troupes can be built independently of their use and used independently of their construction.

Physical distribution is another mechanism needed by reliable applications. HPC does not distinguish
among objects on the basis of their location. In fact, only primitive processes can be said to have a location
in HPC. HPC places almost all physical resource management responsibilities in the hands of ordinary
HPC objects and neither hinders nor helps a designer spread an application over several sites. The
placement of primitive processes is limited solely by the reachable resource managers. Unlike Argus
guardians 19, the processes contained in an HPC object may be placed on any site. HPC is also neutral
regarding stable storage. Stable storage may be encapsulated by an HPC object like any other resource.

Implementing principals as controller subtrees allows a designer to exploit physical distribution of
control as well as computation. In fact, the orphaned domain rule encourages the use of multiple controller
processes, one for each site which contains some portion of the application. If multiple controller processes
were not allowed, applications would be subject to severe availability penalties under the orphan rule and
would be subject to single point failure, no matter how widely distributed they might be.

The HPC kernel checkpoints various aspects of structure to assist in recovering failed objects. For
each interface the kernel records its role, type and structure. For each shell that has been animated, the
kernel records the arguments most recently used to create a process in it. For each shell that is or was a
domain, the previous controller subtree is recorded. Each of these features helps a newly invested
controller know what the functions of each element of its domain are and recover failed elements. As an
example, in the case of controller death and automatic abdication with the preserve option, the controller
that inherits the domain can determine which objects were part of the controller subtree, create

" ;-?".-:-';. -, _ i: ,:- ,:. :. ,;.' ?,- "i :" '" '" " ,"j I



!5F. )Aa .P A rV FvI, J4Wm

Troupe One Troupe Two

i Multicast

Endpoint

Multicast
Extension

Multiplex I] [1 Multicast

Endpoint h Extension

RINGMASTER

Figure 8

.1

S.. qS- S

'. .%~~. ~"5



26

replacement processes in their shells, and reinvest the controller subtree as the principal for the inherited
domain.

The indication of partition and failure represented by changes in the liveness status of interfaces
allows applications to take a wide variety of consistency, recovery, and general reconfiguration actions.
Transaction coordinators can use suspended status and timeouts to build a system tolerant of partition.
Applications that require a number of different types of worker objects can create additional workers to
replace those lost through failure or partition and dynamically insert them into the computation. Servers
can detect when communication with their clients has failed and clean up state accordingly.

Applications can be easily written that configure themselves according to the demands for their
services by maintaining just enough worker objects to meet the demand. If the protocol for requesting
service includes information about where the user is physically (an optimization), the application can
change not only the size but also the location of its implementation base.

6. Sharing
One of the primary responsibilities of an operating system is to allow multiple users to share

resources. In HPC. objects are used to represent resources. All requests for service use the standard form
of inter-object communication, messages sent to interfaces bound with channels. The problem with this
view is that a request for service may come from deep within a user's object hierarchy and be directed to a
resource that resides deep within the system's object hierarchy. In order to implement such a request, each
operation domain would have to propagate an appropriate interface from the leaf nodes of the object tree
to the root. In addition, since some controller must establish communication connections, this suggests a
root controller must be responsible for creating a connection between the operation domains at the root of
each subtree.

This approach is impractical for two reasons. First, it suggests that every operation domain residing
between two communicating objects in the object hierarchy must be involved in all communication
between the two objects. Even if interface connections are implemented so that messages are not actually
forwarded through passive interfaces in shells, some machinery must be invoked within each operation
domain to check interface compatibility and to maintain the appearance of local control. Secondly, the
code required within each controller to make connections for all communication between objects in its
subtree with objects within other subtrees would be considerable, greatly increasing the complexity of each
controller. An alternative approach is to have two subtrees share an object that can communicate directly
with each of the subtrees. We will describe a provisional mechanism for sharing in HPC; a refinement of
this scheme is currently under investigation.

One of the fundamental motivations for the sharing mechanism is the desire to provide a clean
relationship between clients and servers when their closest common ancestor is many levels above in the
hierarchy. Sharing is simply a form of communication that obviates the need to describe all
communication between subtrees in terms of connections through the root of the object tree. We have
chosen to share objects rather than channels or interfaces. Although the shared object presents itself in two
domains, only a subset of its interfaces are visible in each domain. Thus. shared objects are an exception to
a strict interpretation of the rule that every object resides within a single domain, although each interface of
a shared object does obey the rule.

Sharing of an object is accomplished by negotiation between the two domains involved. There are
two steps necessary to share an object: (1) the controller of the domain containing the object to be shared
must offer to share the object with another specified domain, naming those interfaces to be made available



27

to the other domain's controller and (2) the controller of the domain in which the object is to be introduced
must accept the object and a subset of its interfaces.

Offer and accept are system calls that do not require a connection between the two domains.
However, if two domains wish to negotiate, the controllers may use any user-defined protocol for this
purpose. All negotiations take place using messages sent through channels: only the final result is
implemented by the kernel. Most instances of sharing will not require negotiation. hence, there is no need
for the corresponding controllers to communicate directly. A system switchboard can be constructed using
a domain that offers to share its interfaces with the world. This is a special case of offer that allows global
services to be provided.

An offer can be made at any time; an acceptance will succeed only if a corresponding offer has been
previously made. When a controller makes an offer to share an object, it loses any rights it would
otherwise lose if the offer were immediately accepted. In particular, any connections extant at the time of
the offer to interfaces named in the offer are immediately broken. Therefore, there is no intermediate step
during which two controllers have access to the same interfaces.

The net result of this sequence of operations is that a single object now resides within two domains.
although the two controllers are constrained in their ability to interfere with each other. Each controller is
capable of establishing connections with a nonoverlapping subset of the object's interfaces. Normally, a
controller has the right to connect or disconnect channels to any interface associated with an object within
its domain. However, if an object is shared, only a subset of interfaces remain within the controller's
domain. The offer and acceptance identify which interfaces are to be controlled by each domain.

Sharing naturally extends to more than two domains. Each domain can share a subset of the
interfaces it controls with another domain, which in turn may share some subset with a third. Also, moving
an object from one domain to another is just a special case of sharing. A domain can offer all of an
object's interfaces to another domain, which, if accepted, will have the effect of moving the object to the
new domain.

We should note that the naming operations necessary to share an object do not impose an additional
burden on either controller. The controller offering to share an object within its domain clearly knows the
names of its interfaces. Similarly, a controller that accepts an object must know the names of those
interfaces it is to control in order to make use of them.

7. Applications

In this section, we will describe how to use the HPC model to build representative system-level
applications. Our goal is to show that our underlying assumptions are not too restrictive and that the
model is sufficiently powerful to describe typical system services.

* 7.1. Reliable Communication

Since the HPC model is intended to support software at very low levels in the system, it is natural to
* assume the minimum functionality, namely asynchronous, unreliable communication. This is clearly

inadequate for most user-level programs, however. Fortunately, HPC provides a framework for building
higher-level communication protocols.

The interface between a user-level program and a reliable protocol can be either procedure-based or
,. object-based. We will describe an object-based scheme similar to that used for network protocols: a

procedure-based approach is independent of the HPC model and will not be discussed. Each machine



28

provides a reliable transport object (RTO) to be interposed between a sender and receiver that require a
reliable channel for communication. The RTO is responsible for implementing the appropriate protocol,
possibly including checksums, acknowledgements, and retransmissions. The local RTO communicates with
remote RTO's to implement reliable remote communication.

Inserting protocol objects between two communicating objects can be viewed as type coercion by the
*, controller. In Figure 9, two objects on different machines want to communicate. Each has specified, using

type names wants-reliable-input (WRi) and wants-reliable-output (WRo), that they would like reliable
communication. The controller can interpose two RTO's that communicate with each other using a reliable
protocol, represented by type names reliable-input (Ri) and reliable-output (Ro). The effect is to
transparently coerce an inherently unreliable channel (the communication medium) into a reliable one.
The two processes involved have no way of knowing that intermediate objects are processing all messages.

This solution assumes reliable communication between objects and their local RTO. The end-to-end
argument 2° implies that this is not strictly necessary, since higher-level checking will be required anyway.
In addition, we do not want to require that the model provide reliable communication for objects on i,c
same machine because it would limit implementation choices in the kernel (e.g., the kernel could not
choose to ignore a message when there is no buffer space) and also undermine the transparency of machine
boundaries in the model. Reliable local communication can be accomplished by using a procedure
interface and a shared data structure for communication with the protocol object.

The RTO is an example of a machine-specific binding of an object. Each machine environment
provides a shared RTO that acts much like any other service, offering a multiplexed interface to the various
users. Each machine has an RTO and no RTO is allowed to migrate to another machine. When a process
wishes to communicate reliably, it must be connected to a reliable transport object on the same machine.
This connection, as well as the location of the RTO, is transparent to the communicating process, but not to
the associated controller.

7.2. Debugging
By nature, distributed programs are very difficult to debug due to asynchronous execution and

communication delays. The most common approach to debugging distributed programs is to provide
mechanisms for monitoring communication between processes. Each process can be viewed as a sequential
program to which traditional debugging techniques can be applied. The interactions between processes are
captured in messages, which can be monitored or changed by the underlying support system. This
approach has the advantage that it can be made transparent to the program and is language independent.
However, a debugger that can only monitor message traffic and other primitive events is of limited use. We
see an obvious need for support for additional levels of abstraction, those defined by user-level software.
during the debugging process. To avoid redefining abstractions during debugging, the system must provide
a general framework for constructing abstract levels within distributed programs and make them available
during the debugging process. Three advantages to using the HPC model for this purpose are: (1) the
model is general, subsuming all abstract layers of a program, including most operating system functions, (2)
the model explicitly supports abstraction, both during program construction and during execution, and (3)
the model provides a framework for transparent monitoring of system-defined operations, as well as
higher-level, user-defined functions.

The most important goal of the HPC model is to provide support for abstract objects in a distributed
system. This support takes the form of system calls to create objects, connect communicating objects, and
protect object abstractions. These calls result in modifications to the object hierarchy, a data structure

.:.':,r,.'.'r;. . "...................,..,.......,.".................,..•...,.....,.,".....-.,..,.,....--","



Machine 
Mahie

User 2

UsrIProtOCOli 
I Protocoli

Figure 9

U...



29

maintained by the HPC kernel at run-time which serves as a concrete representation of the user's
conceptual model of the program. The relationship between objects, as expressed by the program. is present
at run-time and can be exploited by the debugger.

There are two different ways to transparently monitor HPC message communication depending on
the assumptions under which the program was constructed. In many user-level programs, no special
control is required and, therefore, a general system-defined controller is used for communication
connections. This universal controller (analogous to a shell in Unix) would implement normal connections,
but would also provide the capability of monitoring all connections it helps to establish. In particular, a
debugger process could be interposed between every pair of communicating processes by the universal
controller.

An alternative approach would be used if the user program required a controller tailored to the
specific application. In this case, the user-defined controller would have to perform the functions of the
system-defined controller, as well as those additional operations needed by the user. This approach is not

,* truly transparent to the user program, since the controller, which is a part of the program, must make the
. appropriate connections for the debugger. However, the controller is independent of the computation
. within the program and is used solely for control. The communicating processes are unaware that messages

are being monitored.

Controllers could also be used to monitor abstract states of interest to the programmer. A controller
is often required to know something about the abstract state of the objects within its domain in order to
maintain the consistency of the domain abstraction. This abstract state can be passed from the controller to
higher-level mechanisms, including controllers higher in the object hierarchy and the debugger, making it
possible for the user to monitor changes in abstract state during the debugging process. This is especially
attractive because it limits the amount of information presented to the user depending on the current focus
of interest. In this way, the debugger can provide "telescoping" of abstractions, that is, the ability to
monitor events at any level in the object hierarchy.

Finally, HPC provides the ability to control abstract objects directly. In particular, it is possible to
"freeze" an entire object consisting of multiple communicating processes. This makes it easier to control
the order of events during execution because, as with message monitoring, it limits the scope of concern.
Rather than forcing the user to impose a specific schedule on all processes in the system, only the objects of
concern are affected.

7.3. Lightweight Transactions
Zwaenepoel and Almes have suggested a technique for implementing lightweight transactions based

on temporary output files.21  In their scheme, each worker process participating in a distributed
computation is given a ticket (capability) representing a unique identifier, a set of input files, and a set of
output files. Each worker process uses temporary files for output, so as to have no effect on the shared file
system prior to a commit. A centralized job manager is responsible for assigning tickets to workers and
collecting their results. A temporary file is renamed (atomically) by the manager process to commit the
results of a computation. Since a worker's results are written into a temporary file, the actions of a worker
process appear atomic. If the manager process is aborted, the rename operation will never be executed,
hence the workers will have no permanent effect on the file system. If a worker process is partitioned from
the manager, a new worker process can be created by the manager with a new ticket. The results of the
previous worker process will never be renamed since only the most recent ticket is allowed to cause a
commit. Eventually the orphan worker process will complete or abort; in either case its results will be

%. . - . -. * . 4 -



30

discarded.

The problem with this technique is that it has very limited application. It works nicely for the class
of programs that predeclare all files to be used during execution and produce whole files as output. but
does not apply to programs that dynamically open input and output files. In such a case, the manager
process is unable to determine what files will be used by a worker process and, therefore, cannot create a
ticket. The coarseness of control appears to be the limiting factor in this scheme. The HP( model
provides the necessary fine-grain control needed to implement this form of lightweight transaction.

In the HPC model, a controller process is not simply another user process with greater
responsibilities. In HPC, a controller process is responsible for creating and maintaining the structure of its
domain. In particular, a controller must establish all communication connections within its domain.
including connections to the file system. This is exactly the level of detail required to implement
lightweight transactions using atomic file renaming. Since the controller is already interposed between the
user process and file system, it is in a position to perform file rename operations, even on dynamicall

- created files.

One problem with this solution is that it doesn't address the relationbhip between the file name and
it's contents, particularly if the mechanism is to support nested lightweight transactions. For example. if a
process writes the file's name into the file and some other process is allowed to read it before it is
committed, the internal name and external name won't match. A possible Solution would be to have the
controller monitor every interaction with the file system (that is. every read/write), but this would likely
impose an unacceptable amount of overhead. The scheme works best when all files are opened for reading
or writing, in which case it provides a very cheap, but useful, form of transaction.

8. Implementation Issues
In this section we discuss some of the issues that arise in the implementation of an HPC kernel.

'Many related issues are as yet undecided, since an implementation of HPC is just now under development.

8.1. Protection Without Capabilities
One goal of the HPC model is to explore an alternative to capabilities as a protection mechanism.

We wish to minimize that portion of a distributed system which must be reliable for the system as a whole
to operate. Systems which have either general capabilities or "port rights" as a special case of capabilities
must provide reliable mechanisms for their transmission and control. Experience with Unix IPC22 both at
the University of Rochester and Carnegie-Mellon University suggests these mechanisms are difficult to
implement, especially across local-area networks. HPC puts the transfer of access rights in the kernel as
part of the intrinsic support for protection and structure and makes it unnecessary to support the
transmission of capabilities in user message traffic.

Additionally, access and communication control in capability-based systems is potentially chaotic.
Even given system support for capabilities to control access, there is np general agreement on how to
control the proliferation and distribution of capabilities. In systems where there are mechanisms to control
the spread of capabilities, these mechanisms provide a limited set of constraints. 23 To determine potential
holders of access rights in a general capability system, one must do an analysis analogous to global data-
flow analysis. Even this may be insufficient, given run-time input as a source of communications.

There is an analogy between capabilities and typed, validated pointers in a programming language.
Both are useful, but difficult to control and understand in complex structures and often more powerful than
is necessary. HPC operation domains are roughly analogous to scopes in programming languages - simple



31

to identify and control, and generally sufficient to express desirable abstractions. For situations where a
pointer-like mechanism is desired, we provide sharing of objects, which is more controlled than general
capability replication and which appears adequate for most distributed computations.

8.2. Interface Compatibility
The HPC kernel is responsible for ensuring that two interfaces have matching structures before a

connection is allowed. Sufficient information about each interface is maintained within a data structure
describing the object tree to allow the kernel to enforce structural matching. Role compatibility is defined
by the individual controllers and requires no system support.

The controller is also responsible for ensuring type equivalence of connected interfaces. Type
checking of interfaces could be done by any one of a number of techniques. One approach, often used in
programming languages, is to statically declare interfaces and connections. This is an unsatisfactory
solution for -IPC because it would not allow arbitrary dynamic connections. To guarantee type equivalence
of interfaces at run-time would be rather expensive, in that dynamic type checking would be necessary. We
will proceed instead with a simplified type checking scheme using type names to determine equivalence.
Each interface is given a type name upon creation' two interfaces are type equivalent if the type names
match. (Note this is not the same as name equivalence in programming languages.) Name forgery is not a
concern because only authorized controllers are capable of making connections: we are primarily interested
in catching errors. Since the type name is meaningless to the system, designers are free to create them and
interpret them any way they like. To increase confidence in the typing system, user code could be
compiled in an all-encompassing separate compilation system, but the underlying system would be
oblivious to it.

8.3. Forwarding Messages
In most message-based systems, message interfaces are associated with active processes. In HPC.

shells have interfaces: processes are simply a special case of a shell. All messages are eventually interpreted
by processes. but may have to travel through several logical interfaces before reaching an active destination.
To actually forward messages through all the logical "gateways" between two terminal processes presents an
unacceptable burden. Experiments with functional abstraction in the RIG distributed operating system 24

were hindered by the inability to separate the abstract interface (gateway) from a physical process and port.
Fortunately, there is a simple way to obtain the efficiency of end-to-end message passing with the structure
of HPC and its logical gateways.

The HPC kernel maiitains a record of the logical connections between interfaces. For a series of
channels between active pro.esses, the kernel records both the logical path and the active endpoints.
Messages, which can only originate at one of the active endpoints, are immediately sent to the other
endpoint, logically passing through multiple interfaces, even though only one physical channel is used.
However, disconnecting a channel between any two interfaces on the path between two active components
breaks the physical connection. This approach allows each controller to maintain control of its connections,
while supporting an efficient implementation of message passing.

To monitor or modify messages on a channel passing through multiple interfaces, a controller can
insert a process into the logical path by breaking an incoming connection, inserting a connection to the new
process, and creating a new outgoing connection. This action is transparent to the processes at the
endpoints. The effect is to break the previous logical path into two logical paths, each sharing the new
"tap" process as a terminal and requiring no special treatment.

, .'::-'-,-";........... ............-....-...



32

8.4. Domain Protection
The operations that modify a domain can only be issued by the controller of the domain. In order to

check the validity of an operation domain command, the object hierarchy is maintained as a tree with four
fields in each node containing the name of: (1) the object represented by the subtree, (2) the domain inside
the object, (3) the domain outside the object, and (4) the domain controlled by the object. Every node will
contain at least the first three names, although some subtrees will not have an entry in the last field, since
not all subtrees are part of a controller. These fields are initialized when the object is created: they may be
updated each time an operation domain is created or destroyed. In particular, if a controller contains a
sub-object that is made the controller of a nested domain, that sub-object is no longer allowed to control
the external domain.

To determine whether or not a domain modification operation is valid, we must determine whether
the operation arguments are in the same domain and whether, the process issuing the call is in the
controller for that domain. For example, consider an object X that issues a call to connect an interface in
object Y to an interface in object Z. To check the legality of the call, we first determine whether Y and Z
are siblings or whether one is the parent of the other, a necessary condition for a direct connection. If a
connection is possible, we can determine whether X is a controller for the corresponding domain using the
appropriate field in the object tree. Note that this information could be calculated from the relative
positions of object X. Y, and Z in the object tree, but this would only improve the efficiency of domain
creation, while introducing overhead for each domain modification operation. We expect operation domain
creations and deletions to be much less frequent than structure modifications within a domain.

9. Conclusions
One theme of this work is that operating systems facilitate or obstruct solutions to problems in much

the same way that programming languages do. In distributed systems we are forced, almost of necessity, to
build more complex systems to take advantage of the intrinsic properties of distribution. The underlying
operating system should make it straightferward to develop and implement such systems. The HPC model
is a step towards such a system. We believe that the desired features can be made efficient enough to
satisfy all but a small number of distributed applications. We have emphasized the utility of services rather
than their raw performance.

If one wishes to support a special class of applications, such as distributed databases or transaction
systems. the operating system can be chosen to provide services of tremendous specific utility. The HPC
model has built-in biases and assumptions about the way applications will be designed. We assume that

, hierarchies will be the most common structure and that the implementation (and thus specific processes) of
a given service should be hidden from the client. The intent is to provide mechanisms sufficiently general
to let the user build whatever application structures are desired and avoid special-purpose mechanisms.
Given several alternatives, we have chosen the one that: (1) makes the fewest assumptions. (2) can be used
to implement the others most precisely, (3) is most independent of other aspects of the system design, and
(4) can be used to solve several problems.

HPC was designed to support the construction of distributed operating systems, as well as other
support layers. It is not intended to be a user presentation layer, witness the fact that communication in
HPC is asynchronous and unreliable, an unattractive combination for user building blocks. It is important
to note, however, that higher level abstractions, such as atomic transactions and reliable protocols, can be
built using the HPC mechanisms.



. T-'.l y . - -' ~- J' . g-i / . -. " .Z ; -' - '.- ,o - _ . '-:- t' - L.. . - . .V. 1- v. - .-7 . -- . W,

33

A major assumption of this work is that interesting applications have significant, long-lived, internal
communications patterns and that most applications will not be multiplex servers with well-known
addresses. To acknowledge and manipulate the relationships between processes, connections should be
named and distinguished. The primary objections to connection-based communications have been in the
cost of establishing and destroying connections. The assumption of long-lived multiple-process structures

makes the argument of overhead cost less convincing. Further, there is no constraint on the
implementation to provide an abstract service based on connections in terms of physical connections: a
connectionless implementation might serve just as well. The user should see logical connections between
communicating elements regardless of how the transport protocols are implemented.

Our design principles may be summarized as follows:

" Hierarchical process structuring based on abstraction and composition
* Asynchronous message passing over persistent connections
* Dynamic system configuration under user control

* Controlled access without capabilities
* Little dependence on particular resource management facilities
' Emphasis on the tools needed to build reliable mechanisms

We do not expect the HPC model to be a panacea for structuring operating systems. The benefits of

the model have an associated cost that may be impractical for some operating system functions. The full
costs of establishing and maintaining the relationships implied by the model have yet to be determined, but
will surely have an impact on its applicability. The suitability of imposing the HPC model on the

interactions between two processes will depend on their frequency of execution, granularity of interaction,
relative failure probabilities, and the level or error recovery required. In particular, we do not expect

significant advantage will be gained by imposing the model on extensive single-site interactions, such as that

between a paging process and a disk device process. For reasons of consistency and transparency, we
believe it will be necessary for the model to support all relationships. regardless of machine boundaries.

However. the model is most useful for describing long-lived relationships that span multiple machines. For
such long-lived. distributed computations, the HPC model provides a uniform framework for all system
services, including communication, protection, resource management, and error recovery.

9

i.

.1

i' . . . ° . ..4. • . . ° , - - . . - . - . . . . - ° . - - ° • .

.4°. . "; '''"" ' ';. " '. -" -"% '. ,...,%,...,. ','. .. -; "¢ " ". '- ." ."-""" %



34

References
1. A.K. Jones, The Object Model: A Conceptual Tool for Structuring Software, in Operating Systems -

An Advanced Course, R. Bayer. R.M. Graham and G. Seegmueller (ed.), Springer Verlag, New York,
1979, 7-16.

2. P.M. Schwarz and A.Z. Spector, Synchronizing Shared Abstract Types, CMU-CS-83-163. Carnegie-
Mellon University, Pittsburgh, Nov 1983.

3. C. Hewitt and R. Atkinson, Parallelism and Synchronization in Actor Systems, Proceedings 4th Symp.
Principles of Programming Languages, Los Angeles, Jan 1977, 267-280.

4. A. Goldberg and Robson, Smallalk-80, The Language and Its Implementation, Addison-Wesley, New
York. 1983.

5. S.J. Leffler, W.N. Joy and M.K. McKusick, UNIX Programmer's Manual, 4.2 Berkeley Software
Distribution, Computer Science Department, University of California at Berkeley, August 1983.

6. F. Baskett, J.H. Howard and J.T. Montague, Task Communication in Demos, Proc. 61h Symp. on
Operating Systems Principles, West Lafayette, Indiana, Nov 1977, 23-31.

7. M.H. Solomon and R.A. Finkel, The Roscoe Distributed Operating System, Proc. 7th Symp. on
Operating System Principles, Pacific Grove, Calif., Dec 1979, 108-114.

8. C.S. Carr, S.D. Crocker and V.G. Cerf, Host-Host Communication Protocol in the ARPA Network,

Proceedings AFIPS Spring Joint Computer Conference 36. (May 1970), 589-597.

9. R.F. Rashid and G.G. Robertson, Accent: A Communication Oriented Network Operating System
Kernel. Proc. 8th Symposium on Operating .System Principles, Pacific Grove. Calif., Dec 1981. 64-75.

10. G. Almes. A. Black, E.D. Lazowska and J.D. Noe, The Eden System: A Technical Review, Technical
Report 83-10-05, Dept. of Computer Science, University of Washington, Oct 1983.

11. E. Lazowska, H. Levy, G. Almes, M. Fischer, R. Fowler and S. Vestal. The Architecture of the Eden
System. Proc. 8th Symp. on Operating Systems Principles. Pacific Grove, Calif., Dec 1981, 148-159.

12. C.S. Ellis, J.A. Feldman and J.E. Heliotis, Language Constructs and Support Systems for Distributed
Computing, Technical Report 102, Department of Computer Science, University of Rochester, May
1982.

13. M.L. Powell and B.P. Miller, Process Migration in DEMOS/MP, Proc. 9th Symp. on Operating
Systems Principles, Bretton Woods, N.H., Nov 1983, 110-119.

14. W. Zwaenepoel and K.A. Lantz, Perseus: Retrospective on a Portable Operating System, Technical
Report STAN-CS-83-945, Stanford University, Feb 1983.

15. R.A. Finkel and M.H. Solomon, The Arachne Distributed Operating System, Technical Report #439.

University of Wisconsin - Madison Computer Sciences, July 1981.

16. Y. Artsy, H-Y. Chang and R. Finkel, Charlotte: Design and Implementation of a Distributed Kernel,
Technical Report 554, University of Wisconsin - Madison, August 1984.

17. B. Walker. G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed Operating System.
Proc. 9th Symp. on Operating Systems Principles, Bretton Woods, N.H., Nov 1983.

18. E.C. Cooper. Circus: A Replicated Procedure Call Facility, Proceedings 4th Symposium on Reliability
in Distributed Software and Database Systems, Silver Spring, Maryland, 15-17 October 1984. 11-23.

I

_ ,. -..,,-.,- - ;,.. ..: / ..- -. ......; .,--..,. .-- .',-'-. .'.. .. .,.. ...- .'..: ., ..-....-.. .-.. .. ,--;,,.,.-,-,'. , _ .-., .-... "- .,



35

19. B. Liskov and R. Scheifler, Guardians and Actions: Linguistic Support for Robust, Distributed
Programs, ACM Transactions on Programming Languages and Systems 5. 3 (July 1983), 381-404.

20. J.H. Saltzer, D.P. Reed and D.D. Clark, End-To-End Arguments in System Design, ACM
Transactions on Computer Systems 2, 4 (Nov 1984), 277-288.

21. G. Almes and W. Zwaenepoel, Understanding and Exploiting Distribution, TR85-12, Department of
Computer Science, Rice University, Feb 1985.

22. R.F. Rashid, An Inter-Process Communication Facility for UNIX, Technical Report CMU-CS-80-124,
Carnegie-Mellon University, Apr 1981.

23. W.A. Wulf, R. Levin and S.P. Harbison, Hydra/C.mmp: An Experimental Computer System,
McGraw-Hill, New York, 1981.

24. J.E. Ball, J.A. Feldman, J.R. Low, R. Rashid and P. Rovner, RIG, Rochester's Intelligent Gateway:
System Overview, IEEE Transactions on Software Engineering SE-2, 4 (1976), 321-328.

m4

m. *,



'1

£
1

*1I

.4

I


